Stuart, T. & Satija, R. Integrative single-cell evaluation. Nat. Rev. Genet. 20, 257–272 (2019).
McKinnon, Okay. M. Circulation cytometry: an summary. Curr. Protoc. Immunol. 120, 5.1.1–5.1.11 (2018).
Longo, S. Okay., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).
McGinnis, L. M., Ibarra-Lopez, V., Rost, S. & Ziai, J. Medical and analysis functions of multiplexed immunohistochemistry and in situ hybridization. J. Pathol. 254, 405–417 (2021).
Byron, S. A., Van Keuren-Jensen, Okay. R., Engelthaler, D. M., Carpten, J. D. & Craig, D. W. Translating RNA sequencing into medical diagnostics: alternatives and challenges. Nat. Rev. Genet. 17, 257–271 (2016).
Liu, H. et al. DNA methylation atlas of the mouse mind at single-cell decision. Nature 598, 120–128 (2021).
Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the mouse major motor cortex. Nature 598, 103–110 (2021).
Schwanhüusser, B. et al. World quantification of mammalian gene expression management. Nature 473, 337–342 (2011).
Prabakaran, S., Lippens, G., Steen, H. & Gunawardena, J. Submit-translational modification: nature’s escape from genetic imprisonment and the premise for dynamic data encoding. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 565–583 (2012).
Moffitt, J. R., Lundberg, E. & Heyn, H. The rising panorama of spatial profiling applied sciences. Nat. Rev. Genet. 23, 741–759 (2022).
Chung, Okay. et al. Structural and molecular interrogation of intact organic programs. Nature 497, 332–337 (2013).
Park, Y.-G. G. et al. Safety of tissue physicochemical properties utilizing polyfunctional crosslinkers. Nat. Biotechnol. https://doi.org/10.1038/nbt.42813 (2018).
Susaki, E. A. et al. Complete-brain imaging with single-cell decision utilizing chemical cocktails and computational evaluation. Cell 157, 726–739 (2014).
Renier, N. et al. IDISCO: a easy, fast methodology to immunolabel giant tissue samples for quantity imaging. Cell 159, 896–910 (2014).
Arias, A., Manubens-Gil, L. & Dierssen, M. Fluorescent transgenic mouse fashions for whole-brain imaging in well being and illness. Entrance. Mol. Neurosci. 15, 958222 (2022).
Renier, N. et al. Mapping of mind exercise by automated quantity evaluation of speedy early genes. Cell 165, 1789–1802 (2016).
Susaki, E. A. et al. Versatile whole-organ/physique staining and imaging based mostly on electrolyte-gel properties of organic tissues. Nat. Commun. 11, 1982 (2020).
Zhao, S. et al. Mobile and molecular probing of intact human organs. Cell 180, 796–812 (2020).
Murray, E. et al. Easy, scalable proteomic imaging for high-dimensional profiling of intact programs. Cell 163, 1500–1514 (2015).
Cai, R. et al. Panoptic imaging of clear mice reveals whole-body neuronal projections and cranium–meninges connections. Nat. Neurosci. 22, 317–327 (2018).
Lai, H. M. et al. Antibody stabilization for thermally accelerated deep immunostaining. Nat. Strategies 19, 1137–1146 (2022).
Ku, T. et al. Elasticizing tissues for reversible form transformation and accelerated molecular labeling. Nat. Strategies 17, 609–613 (2020).
Tainaka, Okay. et al. Complete-body imaging with single-cell decision by tissue decolorization. Cell 159, 911–924 (2014).
Belle, M. et al. Tridimensional visualization and evaluation of early human improvement. Cell 169, 161–173 (2017).
Lai, H. M. et al. Subsequent era histology strategies for three-dimensional imaging of contemporary and archival human mind tissues. Nat. Commun. 9, 1066 (2018).
Hama, H. et al. ScaleS: an optical clearing palette for organic imaging. Nat. Neurosci. 18, 1518–1529 (2015).
Gleave, J. A., Lerch, J. P., Henkelman, R. M. & Nieman, B. J. A way for 3D immunostaining and optical imaging of the mouse mind demonstrated in neural progenitor cells. PLoS ONE 8, e72039 (2013).
Sillitoe, R. V. & Hawkes, R. Complete-mount immunohistochemistry: a high-throughput display for patterning defects within the mouse cerebellum. J. Histochem. Cytochem. 50, 235–244 (2002).
Dent, J. A., Polson, A. G. & Klymkowsky, M. W. An entire-mount immunocytochemical evaluation of the expression of the intermediate filament protein vimentin in Xenopus. Improvement 105, 61–74 (1989).
Mai, H. et al. Complete-body mobile mapping in mouse utilizing commonplace IgG antibodies. Nat. Biotechnol. 42, 617–627 (2023).
Kubota, S. I. et al. Complete-body profiling of most cancers metastasis with single-cell decision. Cell Rep. 20, 236–250 (2017).
Li, W., Germain, R. N. & Gerner, M. Y. Multiplex, quantitative mobile evaluation in giant tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proc. Natl Acad. Sci. USA 114, E7321–E7330 (2017).
Dean, Okay. M., Roudot, P., Welf, E. S., Danuser, G. & Fiolka, R. Deconvolution-free subcellular imaging with axially swept gentle sheet microscopy. Biophys. J. 108, 2807–2815 (2015).
Shi, L. et al. Extremely-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nat. Biotechnol. 40, 364–373 (2021).
Kim, S.-Y. et al. Stochastic electrotransport selectively enhances the transport of extremely electromobile molecules. Proc. Natl Acad. Sci. USA 112, E6274–E6283 (2015).
Pavlova, I. P., Shipley, S. C., Lanio, M., Hen, R. & Denny, C. A. Optimization of immunolabeling and clearing strategies for indelibly-labeled reminiscence traces. Hippocampus 28, 523–535 (2018).
Yau, C. N. et al. Rules of deep immunohistochemistry for 3D histology. Cell Rep. Strategies 3, 100458 (2023).
Murakami, T. C. et al. A 3-dimensional single-cell-resolution whole-brain atlas utilizing CUBIC-X enlargement microscopy and tissue clearing. Nat. Neurosci. 21, 625–637 (2018).
Roberts, D. et al. Particular ion and buffer results on protein–protein interactions of a monoclonal antibody. Mol. Pharm. 12, 179–193 (2015).
Qualtiere, L. F., Anderson, A. G. & Meyers, P. Results of ionic and nonionic detergents on antigen-antibody reactions. J. Immunol. 119, 1645–1651 (1977).
Cabral, D. J., Hamilton, J. A. & Small, D. M. The ionization habits of bile acids in numerous aqueous environments. J. Lipid Res. 27, 334–343 (1987).
Esposito, G., Giglio, E., Pavel, N. V. & Zanobi, A. Measurement and form of sodium deoxycholate micellar aggregates. J. Phys. Chem. 91, 356–362 (1987).
Makino, S., Reynolds, J. A. & Tanford, C. The binding of deoxycholate and Triton X 100 to proteins. J. Biol. Chem. 248, 4926–4932 (1973).
Proença, L. et al. Electrocatalytic oxidation of d-sorbitol on platinum in acid medium: evaluation of the response merchandise. J. Electroanal. Chem. 432, 237–242 (1997).
Albanese, A. et al. Multiscale 3D phenotyping of human cerebral organoids. Sci. Rep. 10, 21487 (2020).
Roy, D. S. et al. Mind-wide mapping reveals that engrams for a single reminiscence are distributed throughout a number of mind areas. Nat. Commun. 13, 1799 (2022).
Muzumdar, M. D., Tasic, B., Miyamichi, Okay., Li, L. & Luo, L. A worldwide double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).
Livet, J. et al. Transgenic methods for combinatorial expression of fluorescent proteins within the nervous system. Nature 450, 56–62 (2007).
Gong, S. et al. A gene expression atlas of the central nervous system based mostly on bacterial synthetic chromosomes. Nature 425, 917–925 (2003).
Valjent, E., Bertran-Gonzalez, J., Hervé, D., Fisone, G. & Girault, J.-A. Trying BAC at striatal signaling: cell-specific evaluation in new transgenic mice. Developments Neurosci. 32, 538–547 (2009).
Kim, Y. et al. Mind-wide maps reveal stereotyped cell-type-based cortical structure and subcortical sexual dimorphism. Cell 171, 456–469 (2017).
Zhang, C. et al. A platform for stereological quantitative evaluation of the brain-wide distribution of type-specific neurons. Sci. Rep. 7, 14334 (2017).
Tanahira, C. et al. Parvalbumin neurons within the forebrain as revealed by parvalbumin-Cre transgenic mice. Neurosci. Res. 63, 213–223 (2009).
Nigro, M. J., Kirikae, H., Kjelsberg, Okay., Nair, R. R. & Witter, M. P. Not all that’s gold glitters: PV-IRES-Cre mouse line reveals low effectivity of labeling of parvalbumin interneurons within the perirhinal cortex. Entrance. Neural Circuits 15, 781928 (2021).
Li, X. et al. Technology of a whole-brain atlas for the cholinergic system and mesoscopic projectome evaluation of basal forebrain cholinergic neurons. Proc. Natl Acad. Sci. USA 115, 415–420 (2018).
Heffner, C. S. et al. Supporting conditional mouse mutagenesis with a complete cre characterization useful resource. Nat. Commun. 3, 1218 (2012).
von Engelhardt, J., Eliava, M., Meyer, A. H., Rozov, A. & Monyer, H. Useful characterization of intrinsic cholinergic interneurons within the cortex. J. Neurosci. 27, 5633–5642 (2007).
Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232 (2012).
Madisen, L. et al. A strong and high-throughput Cre reporting and characterization system for the entire mouse mind. Nat. Neurosci. 13, 133–140 (2009).
Luo, L. et al. Optimizing nervous system-specific gene concentrating on with Cre driver strains: prevalenceof germline recombination and influencing elements. Neuron 106, 37–65 (2020).
Swaney, J. et al. Scalable picture processing strategies for quantitative evaluation of volumetric organic photographs from light-sheet microscopy. Preprint at bioRxiv https://doi.org/10.1101/576595 (2019).
Tallini, Y. N. et al. BAC transgenic mice specific enhanced inexperienced fluorescent protein in central and peripheral cholinergic neurons. Physiol. Genomics 27, 391–397 (2006).
Schmidt-Supprian, M. & Rajewsky, Okay. Vagaries of conditional gene concentrating on. Nat. Immunol. 8, 665–668 (2007).
Matthaei, Okay. I. & Matthaei, Okay. I. Genetically manipulated mice: a strong device with unsuspected caveats. J. Physiol. 582, 481–488 (2007).
Huang, Z. J., Taniguchi, H., He, M. & Kuhlman, S. Genetic labeling of neurons in mouse mind. Chilly Spring Harb. Protoc. 2014, 150–160 (2014).
Marín, O. Interneuron dysfunction in psychiatric issues. Nat. Rev. Neurosci. 13, 107–120 (2012).
Zikopoulos, B. & Barbas, H. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Entrance. Hum. Neurosci. 7, 609 (2013).
Niwa, M. et al. Knockdown of DISC1 by in utero gene switch disturbs postnatal dopaminergic maturation within the frontal cortex and results in grownup behavioral deficits. Neuron 65, 480–489 (2010).
Canty, A. J. et al. Regionalized lack of parvalbumin interneurons within the cerebral cortex of mice with deficits in GFRα1 signaling. J. Neurosci. 29, 10695–10705 (2009).
Park, J. et al. Built-in platform for multiscale molecular imaging and phenotyping of the human mind. Science 384, eadh9979 (2024).
Caballero, A., Flores-Barrera, E., Cass, D. Okay. & Tseng, Okay. Y. Differential regulation of parvalbumin and calretinin interneurons within the prefrontal cortex throughout adolescence. Mind Struct. Funct. 219, 395–406 (2014).
Caballero, A., Flores-Barrera, E., Thomases, D. R. & Tseng, Okay. Y. Downregulation of parvalbumin expression within the prefrontal cortex throughout adolescence causes enduring prefrontal disinhibition in maturity. Neuropsychopharmacology 45, 1527–1535 (2020).
Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).
Hong, F. et al. Thermal-plex: fluidic-free, fast sequential multiplexed imaging with DNA-encoded thermal channels. Nat. Strategies 21, 331–341 (2023).
Lancaster, M. A. & Knoblich, J. A. Technology of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340 (2014).
Mellios, N. et al. MeCP2-regulated miRNAs management early human neurogenesis by way of differential results on ERK and AKT signaling. Mol. Psychiatry 23, 1051–1065 (2017).
Tehrani-Bagha, A. R. & Holmberg, Okay. Solubilization of hydrophobic dyes in surfactant options. Supplies 6, 580–608 (2013).
Podgorski, Okay., Terpetschnig, E., Klochko, O. P., Obukhova, O. M. & Haas, Okay. Extremely-bright and -stable purple and near-infrared squaraine fluorophores for in vivo two-photon imaging. PLoS ONE 7, e51980 (2012).
Dong, H. W. Allen Reference Atlas: A Digital Shade Mind Atlas of the C57Bl/6J Male Mouse (Wiley, 2008).
Klein, S., Staring, M., Murphy, Okay., Viergever, M. A. & Pluim, J. elastix: a toolbox for intensity-based medical picture registration. IEEE Trans. Med. Imaging 29, 196–205 (2010).
Yun, D. H. et al. Uniform volumetric single-cell processing for organ-scale molecular phenotyping. GitHub https://github.com/chunglabmit/eflash (2024).