Close Menu
    Facebook X (Twitter) YouTube LinkedIn
    Trending
    • Final Fantasy 7 Rebirth Grind – Day 5 – Live
    • Macroscope | How to save the world economy (and make Trump think it was his doing)
    • What Trump’s second term could mean for U.S. efforts to tackle climate change
    • Healey expects UK to spend 3% of GDP on defence by 2034
    • Trump Crypto Bookmakers: A Comprehensive Analytic thinking of the Ahead Platforms in 2023
    • Twice-poisoned Putin critic makes prediction about Russian government
    • Authorities give update on Los Angeles wildfires
    • ‘A very anxious time’: What a chilly May means for Ontario’s berry season
    Facebook X (Twitter) YouTube LinkedIn
    MORSHEDI
    • Home
      • Spanish
      • Persian
      • Swedish
    • Latest
    • World
    • Economy
    • Shopping
    • Politics
    • Article
    • Sports
    • Youtube
    • More
      • Art
      • Author
      • Books
      • Celebrity
      • Countries
      • Did you know
      • Environment
      • Entertainment
      • Food
      • Gaming
      • Fashion
      • Health
      • Herbs
      • History
      • IT
      • Funny
      • Opinions
      • Poets & philosopher
      • Mixed
      • Mystery
      • Research & Science
      • Spiritual
      • Stories
      • Strange
      • Technology
      • Trending
      • Travel
      • space
      • United Nation
      • University
      • war
      • World Leaders
    MORSHEDI
    Home » Transboundary impacts of pesticide use in food production
    Food

    Transboundary impacts of pesticide use in food production

    morshediBy morshediMay 29, 2025No Comments37 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Transboundary impacts of pesticide use in food production
    Share
    Facebook Twitter LinkedIn Pinterest Email


  • Tilman, D. et al. Forecasting agriculturally pushed world environmental change. Science 292, 281–284 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Gagic, V., Holding, M., Venables, W. N., Hulthen, A. D. & Schellhorn, N. A. Higher outcomes for pest stress, insecticide use, and yield in much less intensive agricultural landscapes. Proc. Natl Acad. Sci. USA 118, e2018100118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jakovac, C. C., Peña-Claros, M., Mesquita, R. C., Bongers, F. & Kuyper, T. W. Swiddens beneath transition: penalties of agricultural intensification within the Amazon. Agric. Ecosyst. Environ. 218, 116–125 (2016).

    Article 

    Google Scholar
     

  • Costa, L. G. in Toxicology Of Pesticides: Experimental, Medical And Regulatory Views (eds Costa, L. G., Galli, C. L. & Murphy, S. D.) 1–10 (Springer, 1987).

  • Meals and Agriculture Group of the United Nations. Pesticides use and commerce — 1990–2022, FAOSTAT analytical briefs. Report no. 89 (FAO, 2024).

  • Shattuck, A., Werner, M., Mempel, F., Dunivin, Z. & Galt, R. World pesticide use and commerce database (GloPUT): new estimates present pesticide use traits in low-income nations considerably underestimated. Glob. Environ. Change 81, 102693 (2023).

    Article 

    Google Scholar
     

  • Rani, L. et al. An in depth overview on the implications of chemical pesticides on human well being and atmosphere. J. Clear. Prod. 283, 124657 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schwingl, P. J., Lunn, R. M. & Mehta, S. S. A tiered method to prioritizing registered pesticides for potential most cancers hazard evaluations: implications for choice making. Environ. Well being 20, 1–14 (2021).

    Article 

    Google Scholar
     

  • Jokanović, M., Oleksak, P. & Kuca, Okay. A number of neurological results related to publicity to organophosphorus pesticides in man. Toxicology 484, 153407 (2023).

    Article 

    Google Scholar
     

  • Tarmure, S. et al. Affect of pesticides on respiratory pathology-a literature overview. Ann. Agric. Environ. Med. 27, 194-200 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Miranda, R. A., Silva, B. S., de Moura, E. G. & Lisboa, P. C. Pesticides as endocrine disruptors: programming for weight problems and diabetes. Endocrine 79, 437–447 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines pushed by mixed stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

    Article 

    Google Scholar
     

  • Rigal, S. et al. Farmland practices are driving chook inhabitants decline throughout Europe. Proc. Natl Acad. Sci. USA 120, e2216573120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides scale back regional biodiversity of stream invertebrates. Proc. Natl Acad. Sci. USA 110, 11039–11043 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Beaumelle, L. et al. Pesticide results on soil fauna communities — a meta‐evaluation. J. Appl. Ecol. 60, 1239–1253 (2023).

    Article 

    Google Scholar
     

  • Vudamala, Okay., Chakraborty, P., Chatragadda, R., Tiwari, A. Okay. & Qureshi, A. Distribution of organochlorine pesticides in floor and deep waters of the Southern Indian Ocean and coastal Antarctic waters. Environ. Pollut. 321, 121206 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Challis, J. Okay. et al. Inputs, supply apportionment, and transboundary transport of pesticides and different polar natural contaminants alongside the decrease Crimson River, Manitoba, Canada. Sci. Complete Environ. 635, 803–816 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tiryaki, O. & Temur, C. The destiny of pesticide within the atmosphere. J. Biol. Environ. Sci. 4, 29–38 (2010).


    Google Scholar
     

  • Maggi, F., Tang, F. H. & Tubiello, F. N. Agricultural pesticide land price range and river discharge to oceans. Nature 620, 1013–1017 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sinclair, C. J. & Boxall, A. B. Assessing the ecotoxicity of pesticide transformation merchandise. Environ. Sci. Technol. 37, 4617–4625 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. Modeling plant uptake of natural contaminants by root greens: the position of diffusion, xylem, and phloem uptake routes. J. Hazard. Mater. 434, 128911 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tongo, I. et al. Ranges, bioaccumulation and biomagnification of pesticide residues in a tropical freshwater meals net. Int. J. Environ. Sci. Technol. 19, 1467–1482 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wyckhuys, Okay. A. et al. Resolving the dual human and environmental well being hazards of a plant-based food plan. Environ. Int. 144, 106081 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Persson, L. et al. Exterior the secure working house of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lallas, P. L. The Stockholm Conference on persistent natural pollution. Am. J. Int. Legislation 95, 692–708 (2001).

    Article 

    Google Scholar
     

  • Möhring, N. et al. Profitable implementation of world targets to scale back nutrient and pesticide air pollution requires appropriate indicators. Nat. Ecol. Evol. 7, 1556–1559 (2023).

    Article 

    Google Scholar
     

  • European Fee. Farm to fork technique: for a good, wholesome and environmentally-friendly meals system (EC, 2020).

  • Halpern, B. S. et al. The environmental footprint of world meals manufacturing. Nat. Maintain. 5, 1027–1039 (2022).

    Article 

    Google Scholar
     

  • Tatton, J. O. G. & Ruzicka, J. Organochlorine pesticides in Antarctica. Nature 215, 346–348 (1967).

    Article 
    CAS 

    Google Scholar
     

  • Shunthirasingham, C. et al. Present‐use pesticide transport to Costa Rica’s excessive‐altitude tropical cloud forest. Environ. Toxicol. Chem 30, 2709–2717 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. & Fantke, P. Towards harmonizing world pesticide rules for floor freshwaters in assist of defending human well being. J. Environ. Manag. 301, 113909 (2022).

    Article 
    CAS 

    Google Scholar
     

  • El-Nahhal, I. & El-Nahhal, Y. Pesticide residues in consuming water, their potential threat to human well being and elimination choices. J. Environ. Manag. 299, 113611 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lefrancq, M., Jadas-Hécart, A., La Jeunesse, I., Landry, D. & Payraudeau, S. Excessive frequency monitoring of pesticides in runoff water to enhance understanding of their transport and environmental impacts. Sci. Complete Environ. 587, 75–86 (2017).

    Article 

    Google Scholar
     

  • Hintze, S., Glauser, G. & Hunkeler, D. Affect of floor water–groundwater interactions on the spatial distribution of pesticide metabolites in groundwater. Sci. Complete Environ. 733, 139109 (2020).

    Article 
    CAS 

    Google Scholar
     

  • MacLeod, M., Woodfine, D., Brimacombe, J., Toose, L. & Mackay, D. A dynamic mass price range for toxaphene in North America. Environ. Toxicol. Chem. 21, 1628–1637 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Blanchoud, H., Moreau-Guigon, E., Farrugia, F., Chevreuil, M. & Mouchel, J. Contribution by city and agricultural pesticide makes use of to water contamination on the scale of the Marne watershed. Sci. Complete Environ. 375, 168–179 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Meite, F. et al. Impression of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils. Sci. Complete Environ. 616, 500–509 (2018).

    Article 

    Google Scholar
     

  • Vryzas, Z., Vassiliou, G., Alexoudis, C. & Papadopoulou-Mourkidou, E. Spatial and temporal distribution of pesticide residues in floor waters in northeastern Greece. Water Res. 43, 1–10 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Commelin, M. C., Baartman, J. E., Zomer, P., Riksen, M. & Geissen, V. Pesticides are considerably transported in particulate section, pushed by land use, rainfall occasion and pesticide traits — a runoff and erosion examine in a small agricultural catchment. Entrance. Environ. Sci. 10, 830589 (2022).

    Article 

    Google Scholar
     

  • Imfeld, G. et al. Do rainfall traits have an effect on the export of copper, zinc and artificial pesticides in floor runoff from headwater catchments? Sci. Complete Environ. 741, 140437 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Y. & Li, Z. Streamlining pesticide regulation throughout worldwide river basins for efficient transboundary environmental administration. Environ. Manag. 73, 67–80 (2024).

    Article 

    Google Scholar
     

  • de Araújo, E. P., Caldas, E. D. & Oliveira-Filho, E. C. Pesticides in floor freshwater: a important overview. Environ. Monit. Assess. 194, 452 (2022).

    Article 

    Google Scholar
     

  • Wolfram, J., Stehle, S., Bub, S., Petschick, L. L. & Schulz, R. Water high quality and ecological dangers in European floor waters — monitoring improves whereas water high quality decreases. Environ. Int. 152, 106479 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Internet, S. et al. Distribution of phthalates, pesticides and drug residues within the dissolved, particulate and sedimentary phases from transboundary rivers (France–Belgium). Sci. Complete Environ. 521, 152–159 (2015).

    Article 

    Google Scholar
     

  • Siriki, Okay., Yao, Okay. M., Gnonsoro, U. P. & Trokourey, A. Transboundary river water pesticide air pollution in historic agriculture areas in West Africa: a case examine within the Comoe, Bia, and Tanoe rivers (Cote d’Ivoire). Arab. J. Geosci. 14, 2068 (2021).

    Article 
    CAS 

    Google Scholar
     

  • McLamb, F. et al. Proof of transboundary motion of chemical compounds from Mexico to the US in Tijuana River Estuary sediments. Chemosphere 348, 140749 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jensen, P. Okay. & Olesen, M. H. Spray mass stability in pesticide utility: a overview. Crop Prot. 61, 23–31 (2014).

    Article 

    Google Scholar
     

  • Fattahi, S. H. & Abdollah pour, S. Sensitivity evaluation of variables affecting spray drift from pesticides for his or her environmental threat assessments on agricultural lands. Environ. Dev. Maintain. https://doi.org/10.1007/s10668-023-04452-x (2024).

  • Lee, S.-J. et al. Acute pesticide sicknesses related to off-target pesticide drift from agricultural functions: 11 states, 1998–2006. Environ. Well being Perspect. 119, 1162–1169 (2011).

    Article 

    Google Scholar
     

  • Al Heidary, M., Douzals, J., Sinfort, C. & Vallet, A. Affect of spray traits on potential spray drift of area crop sprayers: a literature overview. Crop Prot. 63, 120–130 (2014).

    Article 

    Google Scholar
     

  • Hong, S.-w et al. Fluid dynamic approaches for prediction of spray drift from floor pesticide functions: a overview. Agronomy 11, 1182 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Edwards, C. A. Environmental Air pollution by Pesticides Vol. 3 (Springer, 1973).

  • Unsworth, J. et al. Significance of the lengthy vary transport of pesticides within the environment. Pure Appl. Chem. 71, 1359–1383 (1999).

    CAS 

    Google Scholar
     

  • Van Pul, W. A. J. et al. Atmospheric transport and deposition of pesticides: an evaluation of present data. Water Air Soil Pollut. 115, 245–256 (1999).

    Article 

    Google Scholar
     

  • Atkinson, R. et al. Transformations of pesticides within the environment: a state-of-the-art. Water Air Soil Pollut. 115, 219–243 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Socorro, J. et al. The persistence of pesticides in atmospheric particulate section: an rising air high quality situation. Sci. Rep. 6, 33456 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Brühl, C. A. et al. Widespread contamination of soils and vegetation with present use pesticide residues alongside altitudinal gradients in a European Alpine valley. Commun. Earth Environ. 5, 72 (2024).

    Article 

    Google Scholar
     

  • Mayer, L. et al. Widespread pesticide distribution within the European environment questions their degradability in air. Environ. Sci. Technol. 58, 3342–3352 (2024).

    CAS 

    Google Scholar
     

  • Hao, Y. et al. Atmospheric concentrations and temporal traits of polychlorinated biphenyls and organochlorine pesticides within the Arctic throughout 2011–2018. Chemosphere 267, 128859 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Décuq, C. et al. A multiresidue analytical technique on air and rainwater for assessing pesticide atmospheric contamination in untreated areas. Sci. Complete Environ. 823, 153582 (2022).

    Article 

    Google Scholar
     

  • Mahugija, J. A. M., Henkelmann, B. & Schramm, Okay.-W. Ranges and patterns of organochlorine pesticides and their degradation merchandise in rainwater in Kibaha Coast area, Tanzania. Chemosphere 118, 12–19 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Asman, W. A. et al. Moist deposition of pesticides and nitrophenols at two websites in Denmark: measurements and contributions from regional sources. Chemosphere 59, 1023–1031 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Sauret, N., Wortham, H., Strekowski, R., Herckès, P. & Nieto, L. I. Comparability of annual dry and moist deposition fluxes of chosen pesticides in Strasbourg, France. Environ. Pollut. 157, 303–312 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Dereumeaux, C., Fillol, C., Quenel, P. & Denys, S. Pesticide exposures for residents residing near agricultural lands: a overview. Environ. Int. 134, 105210 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bish, M., Oseland, E. & Bradley, Okay. Off-target pesticide motion: a overview of our present understanding of drift because of inversions and secondary motion. Weed Technol. 35, 345–356 (2021).

    Article 

    Google Scholar
     

  • Wong, H. L., Garthwaite, D. G., Ramwell, C. T. & Brown, C. D. Evaluation of publicity {of professional} agricultural operators to pesticides. Sci. Complete Environ. 619, 874–882 (2018).

    Article 

    Google Scholar
     

  • Schönenberger, U. T., Simon, J. & Stamm, C. Are spray drift losses to agricultural roads extra vital for floor water contamination than direct drift to floor waters? Sci. Complete Environ. 809, 151102 (2022).

    Article 

    Google Scholar
     

  • Gorman, H. S., Gagnon, V. S. & Norman, E. S. Native impacts, world sources: the governance of boundary-crossing chemical compounds. Hist. Sci. 54, 443–459 (2016).

    Article 

    Google Scholar
     

  • Navarro, I. et al. Incidence of pesticide residues in indoor mud of farmworker households throughout Europe and Argentina. Sci. Complete Environ. 905, 167797 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Brown, N., Colson, G. & Roessing, M. Tort tradeoffs in instances of pesticide drift: a authorized and financial evaluation. PLoS ONE 17, e0276418 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fremlin, Okay. M. et al. Trophic magnification of legacy persistent natural pollution in an city terrestrial meals net. Sci. Complete Environ. 714, 136746 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nfon, E., Cousins, I. T. & Broman, D. Biomagnification of natural pollution in benthic and pelagic marine meals chains from the Baltic Sea. Sci. Complete Environ. 397, 190–204 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Alaoui, A. et al. Figuring out pesticides of excessive concern for ecosystem, plant, animal, and human well being: a complete area examine throughout Europe and Argentina. Sci. Complete Environ. 948, 174671 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Malarvannan, G., Poma, G. & Covaci, A. Interspecies comparability of the residue ranges and profiles of persistent natural pollution in terrestrial high predators. Environ. Res. 183, 109187 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dietz, R. et al. Three a long time (1983–2010) of contaminant traits in East Greenland polar bears (Ursus maritimus). Half 1: legacy organochlorine contaminants. Environ. Int. 59, 485–493 (2013).

    Article 
    CAS 

    Google Scholar
     

  • González-Gómez, X., Cambeiro-Pérez, N., Figueiredo-González, M. & Martínez-Carballo, E. Wild boar (Sus scrofa) as bioindicator for environmental publicity to natural pollution. Chemosphere 268, 128848 (2021).

    Article 

    Google Scholar
     

  • Morris, A. D. et al. Present‐use pesticides in seawater and their bioaccumulation in polar bear–ringed seal meals chains of the Canadian Arctic. Environ. Toxicol. Chem. 35, 1695–1707 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gomez-Ramirez, P. et al. An summary of present raptor contaminant monitoring actions in Europe. Environ. Int. 67, 12–21 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Espín, S. et al. Monitoring pan-continental traits in environmental contamination utilizing sentinel raptors — what sorts of samples ought to we use? Ecotoxicology 25, 777–801 (2016).

    Article 

    Google Scholar
     

  • de Solla, S. R. et al. in Dioxin and Associated Compounds: Particular Quantity in Honor of Otto Hutzinger (ed. M. Alaee) 203–252 (Springer, 2016).

  • Huang, Y. & Li, Z. Assessing pesticides within the environment: a worldwide examine on air pollution, human well being results, monitoring community and regulatory efficiency. Environ. Int. 187, 108653 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wyckhuys, Okay. A. et al. Restoring practical integrity of the worldwide manufacturing ecosystem by means of organic management. J. Environ. Manag. 370, 122446 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Tang, F. H., Malik, A., Li, M., Lenzen, M. & Maggi, F. Worldwide demand for meals and providers drives environmental footprints of pesticide use. Commun. Earth Environ. 3, 272 (2022).

    Article 

    Google Scholar
     

  • Szpyrka, E. et al. Analysis of pesticide residues in fruit and veggies from the area of south-eastern Poland. Meals Management 48, 137–142 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Poulsen, M. E., Andersen, J. H., Petersen, A. & Jensen, B. H. Outcomes from the Danish monitoring programme for pesticide residues from the interval 2004–2011. Meals Management 74, 25–33 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Patiño, M., Valencia-Guerrero, M. F., Barbosa-Ángel, E. S., Martínez-Cordón, M. J. & Donado-Godoy, P. Analysis of chemical and microbiological contaminants in recent fruit and veggies from peasant markets in Cundinamarca, Colombia. J. Meals Prot. 83, 1726–1737 (2020).

    Article 

    Google Scholar
     

  • EFSA Nationwide abstract studies on pesticide residue evaluation carried out in 2021. EFSA J. 20, 7901E (2023).


    Google Scholar
     

  • Liu, H., Bai, X. & Pang, X. Intercity variability and native components influencing the extent of pesticide residues in marketed fruit and veggies of China. Sci. Complete Environ. 700, 134481 (2020).

    Article 
    CAS 

    Google Scholar
     

  • USDA. Pesticide knowledge program annual abstract, calendar yr 2021 (US Division of Agriculture, 2022).

  • FDA. Pesticide residue monitoring program fiscal yr 2021 pesticide report (US Meals and Drug Administration, 2023).

  • Bouagga, A. et al. Pesticide residues in Tunisian desk grapes and related threat for shopper’s well being. Meals Addit. Contam. B 12, 135–144 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Park, B. Okay., Kwon, S. H., Yeom, M. S., Joo, Okay. S. & Heo, M. J. Detection of pesticide residues and threat evaluation from the native fruit and veggies in Incheon, Korea. Sci. Rep. 12, 9613 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Pesticide residues in rice planted in South and Southwest China. Meals Addit. Contam. B 16, 176–184 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tauseef, M. et al. Evaluation of a number of pesticide residues in rice by LC–MS/MS. Chem. Pap. 75, 2871–2879 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Souza, M. C. O. et al. Latest traits in pesticides in crops: a important overview of the duality of dangers–advantages and the Brazilian laws situation. Environ. Res. 228, 115811 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jia, Q. et al. Pesticide residues in animal-derived meals: present state and views. Meals Chem. 438, 137974 (2023).

    Article 

    Google Scholar
     

  • Ahmadi, S. & Khazaei, S. The focus of pesticide residues in greens: a scientific overview and meta-analyses. J. Agric. Meals Res. 15, 101027 (2024).

    CAS 

    Google Scholar
     

  • Pappas, C. & Foos, B. Pesticide knowledge program: 30 years of meals residue knowledge and traits. J. Expo. Sci. Environ. Epidemiol. 33, 805–812 (2023).

    Article 

    Google Scholar
     

  • Barański, M. et al. Larger antioxidant and decrease cadmium concentrations and decrease incidence of pesticide residues in organically grown crops: a scientific literature overview and meta-analyses. Br. J. Nutr. 112, 794–811 (2014).

    Article 

    Google Scholar
     

  • Handford, C. E., Elliott, C. T. & Campbell, Okay. A overview of the worldwide pesticide laws and the size of problem in reaching the worldwide harmonization of meals security requirements. Integr. Environ. Assess. Manag. 11, 525–536 (2015).

    Article 

    Google Scholar
     

  • Benbrook, C. M. Traits in glyphosate herbicide use in america and globally. Environ. Sci. Eur. 28, 1–15 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Heindel, J. J., Newbold, R. & Schug, T. T. Endocrine disruptors and weight problems. Nat. Rev. Endocrinol. 11, 653–661 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Moura, L. T. R. D. et al. Occupational publicity to organophosphate pesticides and hematologic neoplasms: a scientific overview. Rev. Bras. epidemiol. 23, e200022 (2020).

    Article 

    Google Scholar
     

  • Sharma, A. et al. Endocrine‐disrupting chemical compounds and male reproductive well being. Reprod. Med. Biol. 19, 243–253 (2020).

    Article 

    Google Scholar
     

  • Cressey, P., Vannoort, R. & Malcolm, C. Pesticide residues in conventionally grown and natural New Zealand produce. Meals Addit. Contam. B 2, 21–26 (2009).

    Article 
    CAS 

    Google Scholar
     

  • EFSA. The 2022 European Union report on pesticide residues in meals. European Meals Security Authority. EFSA J. 22, e8753 (2024).


    Google Scholar
     

  • Srinivasan, R., Tamò, M. & Subramanian, S. The case for built-in pest administration in Africa: transition from a pesticide-based method. Curr. Opin. Insect Sci. 54, 100970 (2022).

    Article 

    Google Scholar
     

  • Thompson, L. A. et al. Organochlorine pesticide contamination of meals in Africa: incidence and public well being significance. J. Vet. Med. Sci. 79, 751–764 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Philippe, V., Neveen, A., Marwa, A. & Basel, A.-Y. A. Incidence of pesticide residues in fruit and veggies for the Japanese Mediterranean area and potential influence on public well being. Meals Management 119, 107457 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Galagarza, O. A. et al. Incidence of chemical contaminants in Peruvian produce: a food-safety perspective. Meals 10, 1461 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Latif, Y., Sherazi, S. & Bhanger, M. Evaluation of pesticide residues in generally used greens in Hyderabad, Pakistan. Ecotoxicol. Environ. Saf. 74, 2299–2303 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Agnandji, P. et al. Evaluation of organophosphorus and pyrethroid pesticide residues in Lactuca sativa L. and Solanum macrocarpum L. cultivated in Benin. World J. Anal. Chem. 6, 4–12 (2018).

    CAS 

    Google Scholar
     

  • Machekano, H., Masamba, W., Mvumi, B. M. & Nyamukondiwa, C. Cabbage or ‘pesticide’on the platter? Chemical evaluation reveals a number of and extreme residues in African vegetable markets. Int. J. Meals Contam. 6, 1–13 (2019).

    Article 

    Google Scholar
     

  • Bojacá, C. R., Arias, L. A., Ahumada, D. A., Casilimas, H. A. & Schrevens, E. Analysis of pesticide residues in open area and greenhouse tomatoes from Colombia. Meals Management 30, 400–403 (2013).

    Article 

    Google Scholar
     

  • Mert, A., Qi, A., Bygrave, A. & Stotz, H. U. Traits of pesticide residues in meals imported to the UK from 2000 to 2020. Meals Management 133, 108616 (2022).

    Article 

    Google Scholar
     

  • Gonzalez, R. in Pesticide Chemistry and Bioscience (eds Brooks, G. T. & Roberts, T. R.) 386–401 (Woodhead Publishing, 1999).

  • Hjorth, Okay. et al. Pesticide residues in fruit and veggies from South America — a Nordic undertaking. Meals Management 22, 1701–1706 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Skretteberg, L. et al. Pesticide residues in meals of plant origin from Southeast Asia — a Nordic undertaking. Meals Management 51, 225–235 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Eissa, F., Zidan, N. E.-H., Sebaei, A. S. & Mohamed, M. E. B. Pesticide residues in fruit and veggies: evaluation and threat evaluation of EU RASFF notifications between 1999 and 2022. J. Meals Compos. Anal. 134, 106556 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Skovgaard, M. et al. Pesticide residues in industrial lettuce, onion, and potato samples from Bolivia — a menace to public well being? Environ. Well being Insights 11, 1178630217704194 (2017).

    Article 

    Google Scholar
     

  • Osaili, T. M. et al. Pesticide residues in recent greens imported into the United Arab Emirates. Meals Management 133, 108663 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Persson, L. et al. Indicators for nationwide consumption-based accounting of chemical compounds. J. Clear. Prod. 215, 1–12 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fantke, P., Friedrich, R. & Jolliet, O. Well being influence and harm price evaluation of pesticides in Europe. Environ. Int. 49, 9–17 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sala, S. & Goralczyk, M. Chemical footprint: a methodological framework for bridging life cycle evaluation and planetary boundaries for chemical air pollution. Integr. Environ. Assess. Manag. 9, 623–632 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Birkved, M. & Hauschild, M. Z. PestLCI — a mannequin for estimating area emissions of pesticides in agricultural LCA. Ecol. Mannequin. 198, 433–451 (2006).

    Article 

    Google Scholar
     

  • Tang, F. H. & Maggi, F. Pesticide mixtures in soil: a worldwide outlook. Environ. Res. Lett. 16, 044051 (2021).

    CAS 

    Google Scholar
     

  • Anlauf, R., Schaefer, J. & Kajitvichyanukul, P. Coupling HYDRUS-1D with ArcGIS to estimate pesticide accumulation and leaching threat on a regional foundation. J. Environ. Manag. 217, 980–990 (2018).

    Article 

    Google Scholar
     

  • Potter, H. Okay. & Röös, E. Multi-criteria analysis of plant-based meals — use of environmental footprint and LCA knowledge for shopper steering. J. Clear. Prod. 280, 124721 (2021).

    Article 

    Google Scholar
     

  • Soheilifard, F., Marzban, A., Raini, M. G., Taki, M. & van Zelm, R. Chemical footprint of pesticides utilized in citrus orchards primarily based on cover deposition and off-target losses. Sci. Complete. Environ. 732, 139118 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vångell, J. & Löfgren, M. Pesticide and Water Footprints of Fruits and Greens Imported from Spain. MSc thesis, Chalmers Univ. Expertise (2023).

  • Juraske, R. & Sanjuán, N. Life cycle toxicity evaluation of pesticides utilized in built-in and natural manufacturing of oranges within the Comunidad Valenciana, Spain. Chemosphere 82, 956–962 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Juraske, R., Mutel, C. L., Stoessel, F. & Hellweg, S. Life cycle human toxicity evaluation of pesticides: evaluating fruit and vegetable diets in Switzerland and america. Chemosphere 77, 939–945 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Nordborg, M., Davis, J., Cederberg, C. & Woodhouse, A. Freshwater ecotoxicity impacts from pesticide use in animal and vegetable meals produced in Sweden. Sci. Complete Environ. 581, 448–459 (2017).

    Article 

    Google Scholar
     

  • Navarro, J., Hadjikakou, M., Ridoutt, B., Parry, H. & Bryan, B. A. Pesticide toxicity hazard of agriculture: regional and commodity hotspots in Australia. Environ. Sci. Technol. 55, 1290–1300 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ridoutt, B., Baird, D., Navarro, J. & Hendrie, G. A. Pesticide toxicity footprints of Australian dietary decisions. Vitamins 13, 4314 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Martin, M. & Brandão, M. Evaluating the environmental penalties of Swedish meals consumption and dietary decisions. Sustainability 9, 2227 (2017).

    Article 

    Google Scholar
     

  • D’odorico, P., Carr, J. A., Laio, F., Ridolfi, L. & Vandoni, S. Feeding humanity by means of world meals commerce. Earth’s Futur. 2, 458–469 (2014).


    Google Scholar
     

  • Malik, A. et al. World environmental and social spillover results of EU’s meals commerce. Glob. Maintain. 6, e6 (2023).

    Article 

    Google Scholar
     

  • FAO. Commerce of agricultural commodities 2010–2023. FAOSTAT analytical briefs report no. 98 (Meals and Agriculture Group, 2024).

  • Cederberg, C., Persson, U. M., Schmidt, S., Hedenus, F. & Wooden, R. Past the borders — burdens of Swedish meals consumption because of agrochemicals, greenhouse gases and land-use change. J. Clear. Prod. 214, 644–652 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Pesticide-related dangers embodied in world soybean commerce. Cell Rep. Maintain. 1, 100055 (2024).


    Google Scholar
     

  • Barzman, M. et al. Eight ideas of built-in pest administration. Agron. Maintain. Dev. 35, 1199–1215 (2015).

    Article 

    Google Scholar
     

  • The European Parliament and the Council of the European Union. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Group motion to realize the sustainable use of pesticides. OJEU L. 309, 71–86 (2009).

  • Peterson, R. Okay., Higley, L. G. & Pedigo, L. P. No matter occurred to IPM? Am. Entomol. 64, 146–150 (2018).

    Article 

    Google Scholar
     

  • Deguine, J.-P. et al. Built-in pest administration: good intentions, arduous realities. A overview. Agron. Maintain. Dev. 41, 38 (2021).

    Article 

    Google Scholar
     

  • Deguine, J.-P. et al. Agroecological crop safety for sustainable agriculture. Adv. Agron. 178, 1–59 (2023).

    Article 

    Google Scholar
     

  • Han, P., Rodriguez-Saona, C., Zalucki, M. P., Liu, S.-S. & Desneux, N. A theoretical framework to enhance the adoption of inexperienced Built-in Pest Administration techniques. Commun. Biol. 7, 337 (2024).

    Article 

    Google Scholar
     

  • Wyckhuys, Okay. A., Tang, F. H. & Hadi, B. A. Pest administration science usually disregards farming system complexities. Commun. Earth Environ. 4, 223 (2023).

    Article 

    Google Scholar
     

  • Heimpel, G. E. & Mills, N. J. Organic Management (Cambridge Univ. Press, 2017).

  • Pecenka, J. R., Ingwell, L. L., Foster, R. E., Krupke, C. H. & Kaplan, I. IPM reduces insecticide functions by 95% whereas sustaining or enhancing crop yields by means of wild pollinator conservation. Proc. Natl Acad. Sci. USA 118, e2108429118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Van den Berg, H. & Jiggins, J. Investing in farmers — the impacts of farmer area faculties in relation to built-in pest administration. World Dev. 35, 663–686 (2007).

    Article 

    Google Scholar
     

  • Isbell, F. et al. Advantages of accelerating plant range in sustainable agroecosystems. J. Ecol. 105, 871–879 (2017).

    Article 

    Google Scholar
     

  • Dainese, M. et al. A worldwide synthesis reveals biodiversity-mediated advantages for crop manufacturing. Sci. Adv. 5, eaax0121 (2019).

    Article 

    Google Scholar
     

  • Boldorini, G. X. et al. Predators management pests and improve yield throughout crop varieties and climates: a meta-analysis. Proc. R. Soc. B 291, 20232522 (2024).

    Article 

    Google Scholar
     

  • Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Financial worth of organic management in built-in pest administration of managed plant programs. Annu. Rev. Entomol. 60, 621–645 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gurr, G. M. et al. Multi-country proof that crop diversification promotes ecological intensification of agriculture. Nat. Crops 2, 1–4 (2016).

    Article 

    Google Scholar
     

  • Albrecht, M. et al. The effectiveness of flower strips and hedgerows on pest management, pollination providers and crop yield: a quantitative synthesis. Ecol. Lett. 23, 1488–1498 (2020).

    Article 

    Google Scholar
     

  • Han, W. H. et al. A brand new characteristic of the laboratory mannequin plant Nicotiana benthamiana: useless‐finish entice for sustainable area pest management. Crops Individuals Planet 6, 743–759 (2024).

    Article 

    Google Scholar
     

  • Pijnakker, J., Vangansbeke, D., Duarte, M., Moerkens, R. & Wäckers, F. L. Predators and parasitoids-in-first: from inundative releases to preventative organic management in greenhouse crops. Entrance. Maintain. Meals Syst. 4, 595630 (2020).

    Article 

    Google Scholar
     

  • Klinnert, A. et al. Panorama options assist pure pest management and farm revenue when pesticide utility is diminished. Nat. Commun. 15, 5384 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Scott, D. & Freckleton, R. Crop diversification and parasitic weed abundance: a worldwide meta-analysis. Sci. Rep. 12, 19413 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Janssen, A. & van Rijn, P. C. Pesticides don’t considerably scale back arthropod pest densities within the presence of pure enemies. Ecol. Lett. 24, 2010–2024 (2021).

    Article 

    Google Scholar
     

  • Vialatte, A. et al. in Advances in Ecological Analysis Vol. 65 (eds Bohan, D. A., Dumbrell, A. J. & Vanbergen, A. J.) 133–165 (Elsevier, 2021).

  • Haan, N. L., Zhang, Y. & Landis, D. A. Predicting panorama configuration results on agricultural pest suppression. Traits Ecol. Evol. 35, 175–186 (2020).

    Article 

    Google Scholar
     

  • Redhead, J. W., Oliver, T. H., Woodcock, B. A. & Pywell, R. F. The affect of panorama composition and configuration on crop yield resilience. J. Appl. Ecol. 57, 2180–2190 (2020).

    Article 

    Google Scholar
     

  • Beillouin, D., Ben‐Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Constructive however variable results of crop diversification on biodiversity and ecosystem providers. Glob. Change Biol. 27, 4697–4710 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Larsen, A. E. & Noack, F. Figuring out the panorama drivers of agricultural insecticide use leveraging proof from 100,000 fields. Proc. Natl Acad. Sci. USA 114, 5473–5478 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nicholson, C. C. & Williams, N. M. Cropland heterogeneity drives frequency and depth of pesticide use. Environ. Res. Lett. 16, 074008 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guinet, M. et al. Fostering temporal crop diversification to scale back pesticide use. Nat. Commun. 14, 7416 (2023).

    Article 

    Google Scholar
     

  • Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C. & Batáry, P. Past natural farming — harnessing biodiversity-friendly landscapes. Traits Ecol. Evol. 36, 919–930 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Larsen, A. E., Noack, F. & Powers, L. C. Spillover results of natural agriculture on pesticide use on close by fields. Science 383, eadf2572 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ditzler, L., Van Apeldoorn, D. F., Schulte, R. P., Tittonell, P. & Rossing, W. A. Redefining the sector to mobilize three-dimensional range and ecosystem providers on the arable farm. Eur. J. Agron. 122, 126197 (2021).

    Article 

    Google Scholar
     

  • Weisberger, D., Nichols, V. & Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS ONE 14, e0219847 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Y. et al. Genetic range and illness management in rice. Nature 406, 718–722 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Shah, Okay. Okay. et al. Diversified crop rotation: an method for sustainable agriculture manufacturing. Adv. Agric. 2021, 8924087 (2021).


    Google Scholar
     

  • Kristoffersen, R., Eriksen, L. B., Nielsen, G. C., Jørgensen, J. R. & Jørgensen, L. N. Administration of Septoria tritici blotch utilizing cultivar mixtures. Plant. Dis. 106, 1341–1349 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gibson, A. Okay. Genetic range and illness: the previous, current, and way forward for an outdated concept. Evolution 76, 20–36 (2022).

    Article 

    Google Scholar
     

  • Kristoffersen, R. et al. The potential of cultivar mixtures to scale back fungicide enter and mitigate fungicide resistance growth. Agron. Maintain. Dev. 40, 1–10 (2020).

    Article 

    Google Scholar
     

  • Chadfield, V. G., Hartley, S. E. & Redeker, Okay. R. Associational resistance by means of intercropping reduces yield losses to soil‐borne pests and illnesses. New Phytol. 235, 2393–2405 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yan, E., Munier-Jolain, N., Martin, P. & Carozzi, M. Intercropping on French farms: lowering pesticide and N fertiliser use whereas sustaining gross margins. Eur. J. Agron. 152, 127036 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pumariño, L. et al. Results of agroforestry on pest, illness and weed management: a meta-analysis. Primary Appl. Ecol. 16, 573–582 (2015).

    Article 

    Google Scholar
     

  • Zhu, X. et al. Reductions in water, soil and nutrient losses and pesticide air pollution in agroforestry practices: a overview of proof and processes. Plant Soil 453, 45–86 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tamburini, G. et al. Agricultural diversification promotes a number of ecosystem providers with out compromising yield. Sci. Adv. 6, eaba1715 (2020).

    Article 

    Google Scholar
     

  • Adeux, G. et al. Multicriteria evaluation of conservation agriculture programs. Entrance. Agron. 4, 999960 (2022).

    Article 

    Google Scholar
     

  • Alonso-Ayuso, M., Gabriel, J. L., Hontoria, C., Ibáñez, M. Á. & Quemada, M. The quilt crop termination option to designing sustainable cropping programs. Eur. J. Agron. 114, 126000 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Y., Wu, Okay., Jiang, Y., Guo, Y. & Desneux, N. Widespread adoption of Bt cotton and insecticide lower promotes biocontrol providers. Nature 487, 362–365 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Fabre, F., Rousseau, E., Mailleret, L. & Moury, B. Sturdy methods to deploy plant resistance in agricultural landscapes. New Phytol. 193, 1064–1075 (2012).

    Article 

    Google Scholar
     

  • Duke, S. O., Heap, I., Tranel, P. J. & Bobadilla, L. Okay. What number of methods can nature kill the goose that laid the golden egg? — the numerous mechanisms of advanced glyphosate resistance. Outlooks Pest Manag. 32, 197–202 (2021).

    Article 

    Google Scholar
     

  • Kaplan, I. & Thaler, J. S. Plant resistance attenuates the consumptive and non‐consumptive impacts of predators on prey. Oikos 119, 1105–1113 (2010).

    Article 

    Google Scholar
     

  • Bernal, J. S. & Medina, R. F. Agriculture sows pests: how crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores. Curr. Opin. Insect Sci. 26, 76–81 (2018).

    Article 

    Google Scholar
     

  • Stenberg, J. A., Heil, M., Åhman, I. & Björkman, C. Optimizing crops for biocontrol of pests and illness. Traits Plant. Sci. 20, 698–712 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Snyder, L. D., Gómez, M. I. & Energy, A. G. Crop varietal mixtures as a method to assist insect pest management, yield, financial, and dietary providers. Entrance. Maintain. Meals Syst. 4, 60 (2020).

    Article 

    Google Scholar
     

  • Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Protection priming: an adaptive a part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Han, P., Lavoir, A.-V., Rodriguez-Saona, C. & Desneux, N. Backside-up forces in agroecosystems and their potential influence on arthropod pest administration. Annu. Rev. Entomol. 67, 239–259 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jayaraman, S. et al. Illness-suppressive soils — past meals manufacturing: a important overview. J. Soil Sci. Plant Nutr. 21, 1437–1465 (2021).

    Article 

    Google Scholar
     

  • Tooker, J. F., Douglas, M. R. & Krupke, C. H. Neonicotinoid seed therapies: limitations and compatibility with built-in pest administration. Agric. Environ. Lett. 2, ael2017.2008.0026 (2017).

    Article 

    Google Scholar
     

  • Mourtzinis, S. et al. Neonicotinoid seed therapies of soybean present negligible advantages to US farmers. Sci. Rep. 9, 11207 (2019).

    Article 

    Google Scholar
     

  • de Lira, A. C., Mascarin, G. M. & Júnior, Í. D. Microsclerotia manufacturing of Metarhizium spp. for twin position as plant biostimulant and management of Spodoptera frugiperda by means of corn seed coating. Fungal Biol. 124, 689–699 (2020).

    Article 

    Google Scholar
     

  • Abdullah, H. M. et al. Current and future scopes and challenges of plant pest and illness (P&D) monitoring: distant sensing, picture processing, and synthetic intelligence views. Distant Sens. Appl. Soc. Environ. 32, 100996 (2023).


    Google Scholar
     

  • Villamor, D., Ho, T., Al Rwahnih, M., Martin, R. & Tzanetakis, I. Excessive throughput sequencing for plant virus detection and discovery. Phytopathology 109, 716–725 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rizvi, S. A. H., George, J., Reddy, G. V., Zeng, X. & Guerrero, A. Newest developments in insect intercourse pheromone analysis and its utility in agricultural pest administration. Bugs 12, 484 (2021).

    Article 

    Google Scholar
     

  • Witzgall, P., Kirsch, P. & Cork, A. Intercourse pheromones and their influence on pest administration. J. Chem. Ecol. 36, 80–100 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Liang, L., Li, X., Huang, Y., Qin, Y. & Huang, H. Integrating distant sensing, GIS and dynamic fashions for landscape-level simulation of forest insect disturbance. Ecol. Mannequin. 354, 1–10 (2017).

    Article 

    Google Scholar
     

  • Zhang, J. et al. Monitoring plant illnesses and pests by means of distant sensing know-how: a overview. Comput. Electron. Agr. 165, 104943 (2019).

    Article 

    Google Scholar
     

  • Navrozidis, I. et al. Identification of purple spot illness on asparagus crops throughout spatial and spectral scales. Comput. Electron. Agr. 148, 322–329 (2018).

    Article 

    Google Scholar
     

  • Librán-Embid, F., Klaus, F., Tscharntke, T. & Grass, I. Unmanned aerial autos for biodiversity-friendly agricultural landscapes-a systematic overview. Sci. Complete Environ. 732, 139204 (2020).

    Article 

    Google Scholar
     

  • Li, W. et al. Classification and detection of bugs from area pictures utilizing deep studying for sensible pest administration: a scientific overview. Ecol. Inform. 66, 101460 (2021).

    Article 

    Google Scholar
     

  • Ferentinos, Okay. P. Deep studying fashions for plant illness detection and analysis. Comput. Electron. Agr. 145, 311–318 (2018).

    Article 

    Google Scholar
     

  • Lippi, M. et al. In 2021 twenty ninth Mediterranean Convention on Management and Automation (MED) 342–347 (IEEE, 2021).

  • Zhong, Y., Gao, J., Lei, Q. & Zhou, Y. A vision-based counting and recognition system for flying bugs in clever agriculture. Sensors 18, 1489 (2018).

    Article 

    Google Scholar
     

  • Zhang, W., Miao, Z., Li, N., He, C. & Solar, T. Evaluation of present robotic approaches for precision weed administration. Curr. Robotic. Rep. 3, 139–151 (2022).

    Article 

    Google Scholar
     

  • van Lenteren, J. C., Bolckmans, Okay., Köhl, J., Ravensberg, W. J. & Urbaneja, A. Organic management utilizing invertebrates and microorganisms: loads of new alternatives. BioControl 63, 39–59 (2018).

    Article 

    Google Scholar
     

  • Abram, P. Okay. et al. Weighing penalties of motion and inaction in invasive insect administration. One Earth 7, 782–793 (2024).

    Article 

    Google Scholar
     

  • Fallet, P. et al. Laboratory and area trials reveal the potential of a gel formulation of entomopathogenic nematodes for the organic management of fall armyworm caterpillars (Spodoptera frugiperda). Biol. Management. 176, 105086 (2022).

    Article 

    Google Scholar
     

  • Van Lenteren, J. C. The state of business augmentative organic management: loads of pure enemies, however a irritating lack of uptake. BioControl 57, 1–20 (2012).

    Article 

    Google Scholar
     

  • Benelli, G., Lucchi, A., Thomson, D. & Ioriatti, C. Intercourse pheromone aerosol units for mating disruption: challenges for a brighter future. Bugs 10, 308 (2019).

    Article 

    Google Scholar
     

  • Offenberg, J., Jensen, I. C. & Hansen, R. R. Combatting plant illnesses with ant chemical compounds: a overview and meta‐evaluation. J. Appl. Ecol. 59, 25–38 (2022).

    Article 

    Google Scholar
     

  • Liu, X. et al. Exploring the potential of root-associated micro organism to manage an outbreak weed. Plant Soil 506, 743–765 (2024).

    Article 

    Google Scholar
     

  • Khamare, Y., Chen, J. & Marble, S. C. Allelopathy and its utility as a weed administration device: a overview. Entrance. Plant Sci. 13, 1034649 (2022).

    Article 

    Google Scholar
     

  • Vijayakumar, V., Ampatzidis, Y., Schueller, J. Okay. & Burks, T. Sensible spraying applied sciences for precision weed administration: a overview. Sensible Agric. Technol. 6, 100337 (2023).

    Article 

    Google Scholar
     

  • Zanin, A. R. A. et al. Discount of pesticide utility by way of real-time precision spraying. Sci. Rep. 12, 5638 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Salcedo, R. et al. Lowering floor and airborne drift losses in younger apple orchards with PWM-controlled spray programs. Comput. Electron. Agr. 189, 106389 (2021).

    Article 

    Google Scholar
     

  • Xun, L. et al. Superior spraying programs to enhance pesticide saving and scale back spray drift for apple orchards. Summary. Agric. 24, 1526–1546 (2023).

    Article 

    Google Scholar
     

  • Bordini, I., Naranjo, S. E., Fournier, A. & Ellsworth, P. C. Figuring out selectivity of isocycloseram and afidopyropen and their compatibility with conservation organic management in Arizona cotton. Pest Manag. Sci. 81, 639–653 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Dammer, Okay. H. Actual‐time variable‐price herbicide utility for weed management in carrots. Weed Res. 56, 237–246 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Dammer, Okay.-H. & Wartenberg, G. Sensor-based weed detection and utility of variable herbicide charges in actual time. Crop Prot. 26, 270–277 (2007).

    Article 

    Google Scholar
     

  • Campos, J. et al. Growth of cover vigour maps utilizing UAV for site-specific administration throughout winery spraying course of. Summary. Agric. 20, 1136–1156 (2019).

    Article 

    Google Scholar
     

  • Dammer, Okay.-H., Thöle, H., Volk, T. & Hau, B. Variable-rate fungicide spraying in actual time by combining a plant cowl sensor and a call assist system. Summary. Agric. 10, 431–442 (2009).

    Article 

    Google Scholar
     

  • Tackenberg, M., Volkmar, C. & Dammer, Okay. H. Sensor‐primarily based variable‐price fungicide utility in winter wheat. Pest Manag. Sci. 72, 1888–1896 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Esau, T. J. et al. Spot-application of fungicide for wild blueberry utilizing an automatic prototype variable price sprayer. Summary. Agric. 15, 147–161 (2014).

    Article 

    Google Scholar
     

  • Karimzadeh, R. & Iranipour, S. Spatial distribution and site-specific spraying of fundamental sucking pests of elm timber. Neotrop. Entomol. 46, 316–323 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Flores, S. et al. Analysis of mass trapping and bait stations to manage Anastrepha (Diptera: Tephritidae) fruit flies in mango orchards of Chiapas, Mexico. Fla. Entomol. 100, 358–365 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Meshram, A. T., Vanalkar, A. V., Kalambe, Okay. B. & Badar, A. M. Pesticide spraying robotic for precision agriculture: a categorical literature overview and future traits. J. Subject Robotic. 39, 153–171 (2022).

    Article 

    Google Scholar
     

  • Tonle, F. B. et al. A street map for growing novel choice assist system (DSS) for disseminating built-in pest administration (IPM) applied sciences. Comput. Electron. Agr. 217, 108526 (2024).

    Article 

    Google Scholar
     

  • Wyckhuys, Okay. A., Bentley, J. W., Lie, R., Nghiem, L. T. P. & Fredrix, M. Maximizing farm-level uptake and diffusion of organic management improvements in immediately’s digital period. BioControl 63, 133–148 (2018).

    Article 

    Google Scholar
     

  • Akaka, J. J. et al. Choice assist programs adoption in pesticide administration. Open Res. Eur. 4, 142 (2024).

    Article 

    Google Scholar
     

  • Lázaro, E., Makowski, D. & Vicent, A. Choice assist programs halve fungicide use in comparison with calendar-based methods with out rising illness threat. Commun. Earth Environ. 2, 224 (2021).

    Article 

    Google Scholar
     

  • Montull, J. M., Taberner, A., Bøjer, O. & Rydahl, P. in Choice Assist Methods for Weed Administration (eds Chantre, G. R. & González-Andújar, J. L.) 279–298 (Springer, 2020).

  • Kukar, M., Vračar, P., Košir, D., Pevec, D. & Bosnić, Z. AgroDSS: a call assist system for agriculture and farming. Comput. Electron. Agr. 161, 260–271 (2019).

    Article 

    Google Scholar
     

  • Dalhaus, T., Finger, R., Tzachor, A. & Möhring, N. Improvements for pesticide utility should think about environmental influence. Nat. Meals 5, 969–971 (2024).

    Article 

    Google Scholar
     

  • Möhring, N. et al. Pathways for advancing pesticide insurance policies. Nat. Meals 1, 535–540 (2020).

    Article 

    Google Scholar
     

  • Damalas, C. A. Farmers’ intention to scale back pesticide use: the position of perceived threat of loss within the mannequin of the deliberate conduct idea. Environ. Sci. Pollut. Res. 28, 35278–35285 (2021).

    Article 

    Google Scholar
     

  • Bakker, L., Sok, J., Van Der Werf, W. & Bianchi, F. Kicking the behavior: what makes and breaks farmers’ intentions to scale back pesticide use? Ecol. Econ. 180, 106868 (2021).

    Article 

    Google Scholar
     

  • Chèze, B., David, M. & Martinet, V. Understanding farmers’ reluctance to scale back pesticide use: a alternative experiment. Ecol. Econ. 167, 106349 (2020).

    Article 

    Google Scholar
     

  • Liu, D., Huang, Y. & Luo, X. Farmers’ know-how desire and influencing components for pesticide discount: proof from Hubei Province, China. Environ. Sci. Pollut. Res. 30, 6424–6434 (2023).

    Article 

    Google Scholar
     

  • Thorburn, C. The rise and demise of built-in pest administration in rice in Indonesia. Bugs 6, 381–408 (2015).

    Article 

    Google Scholar
     

  • Wyckhuys, Okay. et al. Ecological illiteracy can deepen farmers’ pesticide dependency. Environ. Res. Lett. 14, 093004 (2019).

    Article 

    Google Scholar
     

  • Bentley, J. W. What farmers don’t know can’t assist them: the strengths and weaknesses of indigenous technical data in Honduras. Agric. Hum. Values 6, 25–31 (1989).

    Article 

    Google Scholar
     

  • Dalhaus, T., Wu, J. & Möhring, N. Quickly rising subsidization of crop insurance coverage in Europe ignores potential environmental results. Nat. Crops 9, 1938–1939 (2023).

    Article 

    Google Scholar
     

  • Zachmann, L., McCallum, C. & Finger, R. Spraying for the wonder: pesticide use for visible look in apple manufacturing. Agric. Econ. 55, 621–638 (2024).

    Article 

    Google Scholar
     

  • Ekesi, S., De Meyer, M., Mohamed, S. A., Virgilio, M. & Borgemeister, C. Taxonomy, ecology, and administration of native and unique fruit fly species in Africa. Annu. Rev. Entomol. 61, 219–238 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Calderon, R. et al. Evaluation of pesticide residues in greens generally consumed in Chile and Mexico: potential impacts for public well being. J. Meals Compos. Anal. 108, 104420 (2022).

    Article 
    CAS 

    Google Scholar
     

  • DeLind, L. B. & Howard, P. H. Protected at any scale? Meals scares, meals regulation, and scaled options. Agric. Hum. Values 25, 301–317 (2008).

    Article 

    Google Scholar
     

  • Montoya, P. et al. Organic management of Anastrepha spp.(Diptera: Tephritidae) in mango orchards by means of augmentative releases of Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae). Biol. Management. 18, 216–224 (2000).

    Article 

    Google Scholar
     

  • Hendrichs, J., Pereira, R. & Vreysen, M. J. Space-Huge Built-in Pest Administration: Growth and Subject Software (Taylor & Francis, 2021).

  • Agboka, Okay. M. et al. Financial influence of a classical organic management program: utility to Diachasmimorpha longicaudata in opposition to Bactrocera dorsalis fruit fly in Kenya. BioControl 69, 269–278 (2024).

    Article 

    Google Scholar
     

  • Agboka, Okay. M. et al. Assessing the potential financial advantages of classical organic management of the invasive fruit fly Bactrocera dorsalis by Fopius arisanus in Kenya. Int. J. Trop. Insect Sci. 44, 1045–1052 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Acebedo, M. M., Diánez, F. & Santos, M. Almeria’s inexperienced pest administration revolution: a chance that arose from a meals security alert. Agronomy 12, 619 (2022).

    Article 

    Google Scholar
     

  • Calvo, F., Bolckmans, Okay. & Belda, J. Organic control-based IPM in candy pepper greenhouses utilizing Amblyseius swirskii (Acari: Phytoseiidae). Biocontrol Sci. Technol. 22, 1398–1416 (2012).

    Article 

    Google Scholar
     

  • Galt, R. E. ‘It simply goes to kill Ticos’: nationwide market regulation and the political ecology of farmers’ pesticide use in Costa Rica. J. Political Ecol. 16, 1–33 (2009).


    Google Scholar
     

  • Mansfield, B. et al. A brand new important social science analysis agenda on pesticides. Agric. Hum. Values 41, 395–412 (2024).

    Article 

    Google Scholar
     

  • Mesnage, R. et al. Bettering pesticide-use knowledge for the EU. Nat. Ecol. Evol. 5, 1560–1560 (2021).

    Article 

    Google Scholar
     

  • Silva, V. et al. Pesticide residues with hazard classifications related to non-target species together with people are omnipresent within the atmosphere and farmer residences. Environ. Int. 181, 108280 (2023).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticlePahalgam Terror Attack LIVE Updates: Shutdown in India’s J&K After Tourists Attacked in Pahalgam
    Next Article I’m Giving My 250M Subscriber $25,000
    morshedi
    • Website

    Related Posts

    Food

    Colorado Springs Pioneers Museum’s Food Truck Tuesdays start next week

    May 31, 2025
    Food

    Gaza food aid decays in Jordan warehouses : NPR

    May 30, 2025
    Food

    MAHA Report, Worker Heat Protections, and Droughts in Europe – Food Tank

    May 30, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Commentary: Does Volvo’s Chinese ownership threaten US national security?

    February 1, 202522 Views

    FHRAI raises red flag over Agoda’s commission practices and GST compliance issues, ET TravelWorld

    April 19, 202514 Views

    Mystery of body in wetsuit found in reservoir puzzles police

    February 22, 202514 Views

    Skype announces it will close in May

    February 28, 202511 Views

    WarThunder – I Joined The Swedish AirForce

    March 17, 20257 Views
    Categories
    • Art
    • Article
    • Author
    • Books
    • Celebrity
    • Countries
    • Did you know
    • Entertainment News
    • Fashion
    • Food
    • Funny
    • Gaming
    • Health
    • Herbs
    • History
    • IT
    • Latest News
    • Mixed
    • Mystery
    • Opinions
    • Poets & philosopher
    • Politics
    • Research & Science
    • Shopping
    • space
    • Spiritual
    • Sports
    • Stories
    • Strange News
    • Technology
    • Travel
    • Trending News
    • United Nation
    • University
    • war
    • World Economy
    • World Leaders
    • World News
    • Youtube
    Most Popular

    Commentary: Does Volvo’s Chinese ownership threaten US national security?

    February 1, 202522 Views

    FHRAI raises red flag over Agoda’s commission practices and GST compliance issues, ET TravelWorld

    April 19, 202514 Views

    Mystery of body in wetsuit found in reservoir puzzles police

    February 22, 202514 Views
    Our Picks

    Final Fantasy 7 Rebirth Grind – Day 5 – Live

    May 31, 2025

    Macroscope | How to save the world economy (and make Trump think it was his doing)

    May 31, 2025

    What Trump’s second term could mean for U.S. efforts to tackle climate change

    May 31, 2025
    Categories
    • Art
    • Article
    • Author
    • Books
    • Celebrity
    • Countries
    • Did you know
    • Entertainment News
    • Fashion
    • Food
    • Funny
    • Gaming
    • Health
    • Herbs
    • History
    • IT
    • Latest News
    • Mixed
    • Mystery
    • Opinions
    • Poets & philosopher
    • Politics
    • Research & Science
    • Shopping
    • space
    • Spiritual
    • Sports
    • Stories
    • Strange News
    • Technology
    • Travel
    • Trending News
    • United Nation
    • University
    • war
    • World Economy
    • World Leaders
    • World News
    • Youtube
    Facebook X (Twitter) YouTube LinkedIn
    • Privacy Policy
    • Disclaimer
    • Terms & Conditions
    • About us
    • Contact us
    Copyright © 2024 morshedi.se All Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.

    Please wait...

    Subscribe to our newsletter

    Want to be notified when our article is published? Enter your email address and name below to be the first to know.
    I agree to Terms of Service and Privacy Policy
    SIGN UP FOR NEWSLETTER NOW