Tilman, D. et al. Forecasting agriculturally pushed world environmental change. Science 292, 281–284 (2001).
Gagic, V., Holding, M., Venables, W. N., Hulthen, A. D. & Schellhorn, N. A. Higher outcomes for pest stress, insecticide use, and yield in much less intensive agricultural landscapes. Proc. Natl Acad. Sci. USA 118, e2018100118 (2021).
Jakovac, C. C., Peña-Claros, M., Mesquita, R. C., Bongers, F. & Kuyper, T. W. Swiddens beneath transition: penalties of agricultural intensification within the Amazon. Agric. Ecosyst. Environ. 218, 116–125 (2016).
Costa, L. G. in Toxicology Of Pesticides: Experimental, Medical And Regulatory Views (eds Costa, L. G., Galli, C. L. & Murphy, S. D.) 1–10 (Springer, 1987).
Meals and Agriculture Group of the United Nations. Pesticides use and commerce — 1990–2022, FAOSTAT analytical briefs. Report no. 89 (FAO, 2024).
Shattuck, A., Werner, M., Mempel, F., Dunivin, Z. & Galt, R. World pesticide use and commerce database (GloPUT): new estimates present pesticide use traits in low-income nations considerably underestimated. Glob. Environ. Change 81, 102693 (2023).
Rani, L. et al. An in depth overview on the implications of chemical pesticides on human well being and atmosphere. J. Clear. Prod. 283, 124657 (2021).
Schwingl, P. J., Lunn, R. M. & Mehta, S. S. A tiered method to prioritizing registered pesticides for potential most cancers hazard evaluations: implications for choice making. Environ. Well being 20, 1–14 (2021).
Jokanović, M., Oleksak, P. & Kuca, Okay. A number of neurological results related to publicity to organophosphorus pesticides in man. Toxicology 484, 153407 (2023).
Tarmure, S. et al. Affect of pesticides on respiratory pathology-a literature overview. Ann. Agric. Environ. Med. 27, 194-200 (2020).
Miranda, R. A., Silva, B. S., de Moura, E. G. & Lisboa, P. C. Pesticides as endocrine disruptors: programming for weight problems and diabetes. Endocrine 79, 437–447 (2023).
Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines pushed by mixed stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).
Rigal, S. et al. Farmland practices are driving chook inhabitants decline throughout Europe. Proc. Natl Acad. Sci. USA 120, e2216573120 (2023).
Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides scale back regional biodiversity of stream invertebrates. Proc. Natl Acad. Sci. USA 110, 11039–11043 (2013).
Beaumelle, L. et al. Pesticide results on soil fauna communities — a meta‐evaluation. J. Appl. Ecol. 60, 1239–1253 (2023).
Vudamala, Okay., Chakraborty, P., Chatragadda, R., Tiwari, A. Okay. & Qureshi, A. Distribution of organochlorine pesticides in floor and deep waters of the Southern Indian Ocean and coastal Antarctic waters. Environ. Pollut. 321, 121206 (2023).
Challis, J. Okay. et al. Inputs, supply apportionment, and transboundary transport of pesticides and different polar natural contaminants alongside the decrease Crimson River, Manitoba, Canada. Sci. Complete Environ. 635, 803–816 (2018).
Tiryaki, O. & Temur, C. The destiny of pesticide within the atmosphere. J. Biol. Environ. Sci. 4, 29–38 (2010).
Maggi, F., Tang, F. H. & Tubiello, F. N. Agricultural pesticide land price range and river discharge to oceans. Nature 620, 1013–1017 (2023).
Sinclair, C. J. & Boxall, A. B. Assessing the ecotoxicity of pesticide transformation merchandise. Environ. Sci. Technol. 37, 4617–4625 (2003).
Li, Z. Modeling plant uptake of natural contaminants by root greens: the position of diffusion, xylem, and phloem uptake routes. J. Hazard. Mater. 434, 128911 (2022).
Tongo, I. et al. Ranges, bioaccumulation and biomagnification of pesticide residues in a tropical freshwater meals net. Int. J. Environ. Sci. Technol. 19, 1467–1482 (2022).
Wyckhuys, Okay. A. et al. Resolving the dual human and environmental well being hazards of a plant-based food plan. Environ. Int. 144, 106081 (2020).
Persson, L. et al. Exterior the secure working house of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).
Lallas, P. L. The Stockholm Conference on persistent natural pollution. Am. J. Int. Legislation 95, 692–708 (2001).
Möhring, N. et al. Profitable implementation of world targets to scale back nutrient and pesticide air pollution requires appropriate indicators. Nat. Ecol. Evol. 7, 1556–1559 (2023).
European Fee. Farm to fork technique: for a good, wholesome and environmentally-friendly meals system (EC, 2020).
Halpern, B. S. et al. The environmental footprint of world meals manufacturing. Nat. Maintain. 5, 1027–1039 (2022).
Tatton, J. O. G. & Ruzicka, J. Organochlorine pesticides in Antarctica. Nature 215, 346–348 (1967).
Shunthirasingham, C. et al. Present‐use pesticide transport to Costa Rica’s excessive‐altitude tropical cloud forest. Environ. Toxicol. Chem 30, 2709–2717 (2011).
Li, Z. & Fantke, P. Towards harmonizing world pesticide rules for floor freshwaters in assist of defending human well being. J. Environ. Manag. 301, 113909 (2022).
El-Nahhal, I. & El-Nahhal, Y. Pesticide residues in consuming water, their potential threat to human well being and elimination choices. J. Environ. Manag. 299, 113611 (2021).
Lefrancq, M., Jadas-Hécart, A., La Jeunesse, I., Landry, D. & Payraudeau, S. Excessive frequency monitoring of pesticides in runoff water to enhance understanding of their transport and environmental impacts. Sci. Complete Environ. 587, 75–86 (2017).
Hintze, S., Glauser, G. & Hunkeler, D. Affect of floor water–groundwater interactions on the spatial distribution of pesticide metabolites in groundwater. Sci. Complete Environ. 733, 139109 (2020).
MacLeod, M., Woodfine, D., Brimacombe, J., Toose, L. & Mackay, D. A dynamic mass price range for toxaphene in North America. Environ. Toxicol. Chem. 21, 1628–1637 (2002).
Blanchoud, H., Moreau-Guigon, E., Farrugia, F., Chevreuil, M. & Mouchel, J. Contribution by city and agricultural pesticide makes use of to water contamination on the scale of the Marne watershed. Sci. Complete Environ. 375, 168–179 (2007).
Meite, F. et al. Impression of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils. Sci. Complete Environ. 616, 500–509 (2018).
Vryzas, Z., Vassiliou, G., Alexoudis, C. & Papadopoulou-Mourkidou, E. Spatial and temporal distribution of pesticide residues in floor waters in northeastern Greece. Water Res. 43, 1–10 (2009).
Commelin, M. C., Baartman, J. E., Zomer, P., Riksen, M. & Geissen, V. Pesticides are considerably transported in particulate section, pushed by land use, rainfall occasion and pesticide traits — a runoff and erosion examine in a small agricultural catchment. Entrance. Environ. Sci. 10, 830589 (2022).
Imfeld, G. et al. Do rainfall traits have an effect on the export of copper, zinc and artificial pesticides in floor runoff from headwater catchments? Sci. Complete Environ. 741, 140437 (2020).
Huang, Y. & Li, Z. Streamlining pesticide regulation throughout worldwide river basins for efficient transboundary environmental administration. Environ. Manag. 73, 67–80 (2024).
de Araújo, E. P., Caldas, E. D. & Oliveira-Filho, E. C. Pesticides in floor freshwater: a important overview. Environ. Monit. Assess. 194, 452 (2022).
Wolfram, J., Stehle, S., Bub, S., Petschick, L. L. & Schulz, R. Water high quality and ecological dangers in European floor waters — monitoring improves whereas water high quality decreases. Environ. Int. 152, 106479 (2021).
Internet, S. et al. Distribution of phthalates, pesticides and drug residues within the dissolved, particulate and sedimentary phases from transboundary rivers (France–Belgium). Sci. Complete Environ. 521, 152–159 (2015).
Siriki, Okay., Yao, Okay. M., Gnonsoro, U. P. & Trokourey, A. Transboundary river water pesticide air pollution in historic agriculture areas in West Africa: a case examine within the Comoe, Bia, and Tanoe rivers (Cote d’Ivoire). Arab. J. Geosci. 14, 2068 (2021).
McLamb, F. et al. Proof of transboundary motion of chemical compounds from Mexico to the US in Tijuana River Estuary sediments. Chemosphere 348, 140749 (2024).
Jensen, P. Okay. & Olesen, M. H. Spray mass stability in pesticide utility: a overview. Crop Prot. 61, 23–31 (2014).
Fattahi, S. H. & Abdollah pour, S. Sensitivity evaluation of variables affecting spray drift from pesticides for his or her environmental threat assessments on agricultural lands. Environ. Dev. Maintain. https://doi.org/10.1007/s10668-023-04452-x (2024).
Lee, S.-J. et al. Acute pesticide sicknesses related to off-target pesticide drift from agricultural functions: 11 states, 1998–2006. Environ. Well being Perspect. 119, 1162–1169 (2011).
Al Heidary, M., Douzals, J., Sinfort, C. & Vallet, A. Affect of spray traits on potential spray drift of area crop sprayers: a literature overview. Crop Prot. 63, 120–130 (2014).
Hong, S.-w et al. Fluid dynamic approaches for prediction of spray drift from floor pesticide functions: a overview. Agronomy 11, 1182 (2021).
Edwards, C. A. Environmental Air pollution by Pesticides Vol. 3 (Springer, 1973).
Unsworth, J. et al. Significance of the lengthy vary transport of pesticides within the environment. Pure Appl. Chem. 71, 1359–1383 (1999).
Van Pul, W. A. J. et al. Atmospheric transport and deposition of pesticides: an evaluation of present data. Water Air Soil Pollut. 115, 245–256 (1999).
Atkinson, R. et al. Transformations of pesticides within the environment: a state-of-the-art. Water Air Soil Pollut. 115, 219–243 (1999).
Socorro, J. et al. The persistence of pesticides in atmospheric particulate section: an rising air high quality situation. Sci. Rep. 6, 33456 (2016).
Brühl, C. A. et al. Widespread contamination of soils and vegetation with present use pesticide residues alongside altitudinal gradients in a European Alpine valley. Commun. Earth Environ. 5, 72 (2024).
Mayer, L. et al. Widespread pesticide distribution within the European environment questions their degradability in air. Environ. Sci. Technol. 58, 3342–3352 (2024).
Hao, Y. et al. Atmospheric concentrations and temporal traits of polychlorinated biphenyls and organochlorine pesticides within the Arctic throughout 2011–2018. Chemosphere 267, 128859 (2021).
Décuq, C. et al. A multiresidue analytical technique on air and rainwater for assessing pesticide atmospheric contamination in untreated areas. Sci. Complete Environ. 823, 153582 (2022).
Mahugija, J. A. M., Henkelmann, B. & Schramm, Okay.-W. Ranges and patterns of organochlorine pesticides and their degradation merchandise in rainwater in Kibaha Coast area, Tanzania. Chemosphere 118, 12–19 (2015).
Asman, W. A. et al. Moist deposition of pesticides and nitrophenols at two websites in Denmark: measurements and contributions from regional sources. Chemosphere 59, 1023–1031 (2005).
Sauret, N., Wortham, H., Strekowski, R., Herckès, P. & Nieto, L. I. Comparability of annual dry and moist deposition fluxes of chosen pesticides in Strasbourg, France. Environ. Pollut. 157, 303–312 (2009).
Dereumeaux, C., Fillol, C., Quenel, P. & Denys, S. Pesticide exposures for residents residing near agricultural lands: a overview. Environ. Int. 134, 105210 (2020).
Bish, M., Oseland, E. & Bradley, Okay. Off-target pesticide motion: a overview of our present understanding of drift because of inversions and secondary motion. Weed Technol. 35, 345–356 (2021).
Wong, H. L., Garthwaite, D. G., Ramwell, C. T. & Brown, C. D. Evaluation of publicity {of professional} agricultural operators to pesticides. Sci. Complete Environ. 619, 874–882 (2018).
Schönenberger, U. T., Simon, J. & Stamm, C. Are spray drift losses to agricultural roads extra vital for floor water contamination than direct drift to floor waters? Sci. Complete Environ. 809, 151102 (2022).
Gorman, H. S., Gagnon, V. S. & Norman, E. S. Native impacts, world sources: the governance of boundary-crossing chemical compounds. Hist. Sci. 54, 443–459 (2016).
Navarro, I. et al. Incidence of pesticide residues in indoor mud of farmworker households throughout Europe and Argentina. Sci. Complete Environ. 905, 167797 (2023).
Brown, N., Colson, G. & Roessing, M. Tort tradeoffs in instances of pesticide drift: a authorized and financial evaluation. PLoS ONE 17, e0276418 (2022).
Fremlin, Okay. M. et al. Trophic magnification of legacy persistent natural pollution in an city terrestrial meals net. Sci. Complete Environ. 714, 136746 (2020).
Nfon, E., Cousins, I. T. & Broman, D. Biomagnification of natural pollution in benthic and pelagic marine meals chains from the Baltic Sea. Sci. Complete Environ. 397, 190–204 (2008).
Alaoui, A. et al. Figuring out pesticides of excessive concern for ecosystem, plant, animal, and human well being: a complete area examine throughout Europe and Argentina. Sci. Complete Environ. 948, 174671 (2024).
Malarvannan, G., Poma, G. & Covaci, A. Interspecies comparability of the residue ranges and profiles of persistent natural pollution in terrestrial high predators. Environ. Res. 183, 109187 (2020).
Dietz, R. et al. Three a long time (1983–2010) of contaminant traits in East Greenland polar bears (Ursus maritimus). Half 1: legacy organochlorine contaminants. Environ. Int. 59, 485–493 (2013).
González-Gómez, X., Cambeiro-Pérez, N., Figueiredo-González, M. & Martínez-Carballo, E. Wild boar (Sus scrofa) as bioindicator for environmental publicity to natural pollution. Chemosphere 268, 128848 (2021).
Morris, A. D. et al. Present‐use pesticides in seawater and their bioaccumulation in polar bear–ringed seal meals chains of the Canadian Arctic. Environ. Toxicol. Chem. 35, 1695–1707 (2016).
Gomez-Ramirez, P. et al. An summary of present raptor contaminant monitoring actions in Europe. Environ. Int. 67, 12–21 (2014).
Espín, S. et al. Monitoring pan-continental traits in environmental contamination utilizing sentinel raptors — what sorts of samples ought to we use? Ecotoxicology 25, 777–801 (2016).
de Solla, S. R. et al. in Dioxin and Associated Compounds: Particular Quantity in Honor of Otto Hutzinger (ed. M. Alaee) 203–252 (Springer, 2016).
Huang, Y. & Li, Z. Assessing pesticides within the environment: a worldwide examine on air pollution, human well being results, monitoring community and regulatory efficiency. Environ. Int. 187, 108653 (2024).
Wyckhuys, Okay. A. et al. Restoring practical integrity of the worldwide manufacturing ecosystem by means of organic management. J. Environ. Manag. 370, 122446 (2024).
Tang, F. H., Malik, A., Li, M., Lenzen, M. & Maggi, F. Worldwide demand for meals and providers drives environmental footprints of pesticide use. Commun. Earth Environ. 3, 272 (2022).
Szpyrka, E. et al. Analysis of pesticide residues in fruit and veggies from the area of south-eastern Poland. Meals Management 48, 137–142 (2015).
Poulsen, M. E., Andersen, J. H., Petersen, A. & Jensen, B. H. Outcomes from the Danish monitoring programme for pesticide residues from the interval 2004–2011. Meals Management 74, 25–33 (2017).
Patiño, M., Valencia-Guerrero, M. F., Barbosa-Ángel, E. S., Martínez-Cordón, M. J. & Donado-Godoy, P. Analysis of chemical and microbiological contaminants in recent fruit and veggies from peasant markets in Cundinamarca, Colombia. J. Meals Prot. 83, 1726–1737 (2020).
EFSA Nationwide abstract studies on pesticide residue evaluation carried out in 2021. EFSA J. 20, 7901E (2023).
Liu, H., Bai, X. & Pang, X. Intercity variability and native components influencing the extent of pesticide residues in marketed fruit and veggies of China. Sci. Complete Environ. 700, 134481 (2020).
USDA. Pesticide knowledge program annual abstract, calendar yr 2021 (US Division of Agriculture, 2022).
FDA. Pesticide residue monitoring program fiscal yr 2021 pesticide report (US Meals and Drug Administration, 2023).
Bouagga, A. et al. Pesticide residues in Tunisian desk grapes and related threat for shopper’s well being. Meals Addit. Contam. B 12, 135–144 (2019).
Park, B. Okay., Kwon, S. H., Yeom, M. S., Joo, Okay. S. & Heo, M. J. Detection of pesticide residues and threat evaluation from the native fruit and veggies in Incheon, Korea. Sci. Rep. 12, 9613 (2022).
Chen, G. et al. Pesticide residues in rice planted in South and Southwest China. Meals Addit. Contam. B 16, 176–184 (2023).
Tauseef, M. et al. Evaluation of a number of pesticide residues in rice by LC–MS/MS. Chem. Pap. 75, 2871–2879 (2021).
Souza, M. C. O. et al. Latest traits in pesticides in crops: a important overview of the duality of dangers–advantages and the Brazilian laws situation. Environ. Res. 228, 115811 (2023).
Jia, Q. et al. Pesticide residues in animal-derived meals: present state and views. Meals Chem. 438, 137974 (2023).
Ahmadi, S. & Khazaei, S. The focus of pesticide residues in greens: a scientific overview and meta-analyses. J. Agric. Meals Res. 15, 101027 (2024).
Pappas, C. & Foos, B. Pesticide knowledge program: 30 years of meals residue knowledge and traits. J. Expo. Sci. Environ. Epidemiol. 33, 805–812 (2023).
Barański, M. et al. Larger antioxidant and decrease cadmium concentrations and decrease incidence of pesticide residues in organically grown crops: a scientific literature overview and meta-analyses. Br. J. Nutr. 112, 794–811 (2014).
Handford, C. E., Elliott, C. T. & Campbell, Okay. A overview of the worldwide pesticide laws and the size of problem in reaching the worldwide harmonization of meals security requirements. Integr. Environ. Assess. Manag. 11, 525–536 (2015).
Benbrook, C. M. Traits in glyphosate herbicide use in america and globally. Environ. Sci. Eur. 28, 1–15 (2016).
Heindel, J. J., Newbold, R. & Schug, T. T. Endocrine disruptors and weight problems. Nat. Rev. Endocrinol. 11, 653–661 (2015).
Moura, L. T. R. D. et al. Occupational publicity to organophosphate pesticides and hematologic neoplasms: a scientific overview. Rev. Bras. epidemiol. 23, e200022 (2020).
Sharma, A. et al. Endocrine‐disrupting chemical compounds and male reproductive well being. Reprod. Med. Biol. 19, 243–253 (2020).
Cressey, P., Vannoort, R. & Malcolm, C. Pesticide residues in conventionally grown and natural New Zealand produce. Meals Addit. Contam. B 2, 21–26 (2009).
EFSA. The 2022 European Union report on pesticide residues in meals. European Meals Security Authority. EFSA J. 22, e8753 (2024).
Srinivasan, R., Tamò, M. & Subramanian, S. The case for built-in pest administration in Africa: transition from a pesticide-based method. Curr. Opin. Insect Sci. 54, 100970 (2022).
Thompson, L. A. et al. Organochlorine pesticide contamination of meals in Africa: incidence and public well being significance. J. Vet. Med. Sci. 79, 751–764 (2017).
Philippe, V., Neveen, A., Marwa, A. & Basel, A.-Y. A. Incidence of pesticide residues in fruit and veggies for the Japanese Mediterranean area and potential influence on public well being. Meals Management 119, 107457 (2021).
Galagarza, O. A. et al. Incidence of chemical contaminants in Peruvian produce: a food-safety perspective. Meals 10, 1461 (2021).
Latif, Y., Sherazi, S. & Bhanger, M. Evaluation of pesticide residues in generally used greens in Hyderabad, Pakistan. Ecotoxicol. Environ. Saf. 74, 2299–2303 (2011).
Agnandji, P. et al. Evaluation of organophosphorus and pyrethroid pesticide residues in Lactuca sativa L. and Solanum macrocarpum L. cultivated in Benin. World J. Anal. Chem. 6, 4–12 (2018).
Machekano, H., Masamba, W., Mvumi, B. M. & Nyamukondiwa, C. Cabbage or ‘pesticide’on the platter? Chemical evaluation reveals a number of and extreme residues in African vegetable markets. Int. J. Meals Contam. 6, 1–13 (2019).
Bojacá, C. R., Arias, L. A., Ahumada, D. A., Casilimas, H. A. & Schrevens, E. Analysis of pesticide residues in open area and greenhouse tomatoes from Colombia. Meals Management 30, 400–403 (2013).
Mert, A., Qi, A., Bygrave, A. & Stotz, H. U. Traits of pesticide residues in meals imported to the UK from 2000 to 2020. Meals Management 133, 108616 (2022).
Gonzalez, R. in Pesticide Chemistry and Bioscience (eds Brooks, G. T. & Roberts, T. R.) 386–401 (Woodhead Publishing, 1999).
Hjorth, Okay. et al. Pesticide residues in fruit and veggies from South America — a Nordic undertaking. Meals Management 22, 1701–1706 (2011).
Skretteberg, L. et al. Pesticide residues in meals of plant origin from Southeast Asia — a Nordic undertaking. Meals Management 51, 225–235 (2015).
Eissa, F., Zidan, N. E.-H., Sebaei, A. S. & Mohamed, M. E. B. Pesticide residues in fruit and veggies: evaluation and threat evaluation of EU RASFF notifications between 1999 and 2022. J. Meals Compos. Anal. 134, 106556 (2024).
Skovgaard, M. et al. Pesticide residues in industrial lettuce, onion, and potato samples from Bolivia — a menace to public well being? Environ. Well being Insights 11, 1178630217704194 (2017).
Osaili, T. M. et al. Pesticide residues in recent greens imported into the United Arab Emirates. Meals Management 133, 108663 (2022).
Persson, L. et al. Indicators for nationwide consumption-based accounting of chemical compounds. J. Clear. Prod. 215, 1–12 (2019).
Fantke, P., Friedrich, R. & Jolliet, O. Well being influence and harm price evaluation of pesticides in Europe. Environ. Int. 49, 9–17 (2012).
Sala, S. & Goralczyk, M. Chemical footprint: a methodological framework for bridging life cycle evaluation and planetary boundaries for chemical air pollution. Integr. Environ. Assess. Manag. 9, 623–632 (2013).
Birkved, M. & Hauschild, M. Z. PestLCI — a mannequin for estimating area emissions of pesticides in agricultural LCA. Ecol. Mannequin. 198, 433–451 (2006).
Tang, F. H. & Maggi, F. Pesticide mixtures in soil: a worldwide outlook. Environ. Res. Lett. 16, 044051 (2021).
Anlauf, R., Schaefer, J. & Kajitvichyanukul, P. Coupling HYDRUS-1D with ArcGIS to estimate pesticide accumulation and leaching threat on a regional foundation. J. Environ. Manag. 217, 980–990 (2018).
Potter, H. Okay. & Röös, E. Multi-criteria analysis of plant-based meals — use of environmental footprint and LCA knowledge for shopper steering. J. Clear. Prod. 280, 124721 (2021).
Soheilifard, F., Marzban, A., Raini, M. G., Taki, M. & van Zelm, R. Chemical footprint of pesticides utilized in citrus orchards primarily based on cover deposition and off-target losses. Sci. Complete. Environ. 732, 139118 (2020).
Vångell, J. & Löfgren, M. Pesticide and Water Footprints of Fruits and Greens Imported from Spain. MSc thesis, Chalmers Univ. Expertise (2023).
Juraske, R. & Sanjuán, N. Life cycle toxicity evaluation of pesticides utilized in built-in and natural manufacturing of oranges within the Comunidad Valenciana, Spain. Chemosphere 82, 956–962 (2011).
Juraske, R., Mutel, C. L., Stoessel, F. & Hellweg, S. Life cycle human toxicity evaluation of pesticides: evaluating fruit and vegetable diets in Switzerland and america. Chemosphere 77, 939–945 (2009).
Nordborg, M., Davis, J., Cederberg, C. & Woodhouse, A. Freshwater ecotoxicity impacts from pesticide use in animal and vegetable meals produced in Sweden. Sci. Complete Environ. 581, 448–459 (2017).
Navarro, J., Hadjikakou, M., Ridoutt, B., Parry, H. & Bryan, B. A. Pesticide toxicity hazard of agriculture: regional and commodity hotspots in Australia. Environ. Sci. Technol. 55, 1290–1300 (2021).
Ridoutt, B., Baird, D., Navarro, J. & Hendrie, G. A. Pesticide toxicity footprints of Australian dietary decisions. Vitamins 13, 4314 (2021).
Martin, M. & Brandão, M. Evaluating the environmental penalties of Swedish meals consumption and dietary decisions. Sustainability 9, 2227 (2017).
D’odorico, P., Carr, J. A., Laio, F., Ridolfi, L. & Vandoni, S. Feeding humanity by means of world meals commerce. Earth’s Futur. 2, 458–469 (2014).
Malik, A. et al. World environmental and social spillover results of EU’s meals commerce. Glob. Maintain. 6, e6 (2023).
FAO. Commerce of agricultural commodities 2010–2023. FAOSTAT analytical briefs report no. 98 (Meals and Agriculture Group, 2024).
Cederberg, C., Persson, U. M., Schmidt, S., Hedenus, F. & Wooden, R. Past the borders — burdens of Swedish meals consumption because of agrochemicals, greenhouse gases and land-use change. J. Clear. Prod. 214, 644–652 (2019).
Wang, J. et al. Pesticide-related dangers embodied in world soybean commerce. Cell Rep. Maintain. 1, 100055 (2024).
Barzman, M. et al. Eight ideas of built-in pest administration. Agron. Maintain. Dev. 35, 1199–1215 (2015).
The European Parliament and the Council of the European Union. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Group motion to realize the sustainable use of pesticides. OJEU L. 309, 71–86 (2009).
Peterson, R. Okay., Higley, L. G. & Pedigo, L. P. No matter occurred to IPM? Am. Entomol. 64, 146–150 (2018).
Deguine, J.-P. et al. Built-in pest administration: good intentions, arduous realities. A overview. Agron. Maintain. Dev. 41, 38 (2021).
Deguine, J.-P. et al. Agroecological crop safety for sustainable agriculture. Adv. Agron. 178, 1–59 (2023).
Han, P., Rodriguez-Saona, C., Zalucki, M. P., Liu, S.-S. & Desneux, N. A theoretical framework to enhance the adoption of inexperienced Built-in Pest Administration techniques. Commun. Biol. 7, 337 (2024).
Wyckhuys, Okay. A., Tang, F. H. & Hadi, B. A. Pest administration science usually disregards farming system complexities. Commun. Earth Environ. 4, 223 (2023).
Heimpel, G. E. & Mills, N. J. Organic Management (Cambridge Univ. Press, 2017).
Pecenka, J. R., Ingwell, L. L., Foster, R. E., Krupke, C. H. & Kaplan, I. IPM reduces insecticide functions by 95% whereas sustaining or enhancing crop yields by means of wild pollinator conservation. Proc. Natl Acad. Sci. USA 118, e2108429118 (2021).
Van den Berg, H. & Jiggins, J. Investing in farmers — the impacts of farmer area faculties in relation to built-in pest administration. World Dev. 35, 663–686 (2007).
Isbell, F. et al. Advantages of accelerating plant range in sustainable agroecosystems. J. Ecol. 105, 871–879 (2017).
Dainese, M. et al. A worldwide synthesis reveals biodiversity-mediated advantages for crop manufacturing. Sci. Adv. 5, eaax0121 (2019).
Boldorini, G. X. et al. Predators management pests and improve yield throughout crop varieties and climates: a meta-analysis. Proc. R. Soc. B 291, 20232522 (2024).
Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Financial worth of organic management in built-in pest administration of managed plant programs. Annu. Rev. Entomol. 60, 621–645 (2015).
Gurr, G. M. et al. Multi-country proof that crop diversification promotes ecological intensification of agriculture. Nat. Crops 2, 1–4 (2016).
Albrecht, M. et al. The effectiveness of flower strips and hedgerows on pest management, pollination providers and crop yield: a quantitative synthesis. Ecol. Lett. 23, 1488–1498 (2020).
Han, W. H. et al. A brand new characteristic of the laboratory mannequin plant Nicotiana benthamiana: useless‐finish entice for sustainable area pest management. Crops Individuals Planet 6, 743–759 (2024).
Pijnakker, J., Vangansbeke, D., Duarte, M., Moerkens, R. & Wäckers, F. L. Predators and parasitoids-in-first: from inundative releases to preventative organic management in greenhouse crops. Entrance. Maintain. Meals Syst. 4, 595630 (2020).
Klinnert, A. et al. Panorama options assist pure pest management and farm revenue when pesticide utility is diminished. Nat. Commun. 15, 5384 (2024).
Scott, D. & Freckleton, R. Crop diversification and parasitic weed abundance: a worldwide meta-analysis. Sci. Rep. 12, 19413 (2022).
Janssen, A. & van Rijn, P. C. Pesticides don’t considerably scale back arthropod pest densities within the presence of pure enemies. Ecol. Lett. 24, 2010–2024 (2021).
Vialatte, A. et al. in Advances in Ecological Analysis Vol. 65 (eds Bohan, D. A., Dumbrell, A. J. & Vanbergen, A. J.) 133–165 (Elsevier, 2021).
Haan, N. L., Zhang, Y. & Landis, D. A. Predicting panorama configuration results on agricultural pest suppression. Traits Ecol. Evol. 35, 175–186 (2020).
Redhead, J. W., Oliver, T. H., Woodcock, B. A. & Pywell, R. F. The affect of panorama composition and configuration on crop yield resilience. J. Appl. Ecol. 57, 2180–2190 (2020).
Beillouin, D., Ben‐Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Constructive however variable results of crop diversification on biodiversity and ecosystem providers. Glob. Change Biol. 27, 4697–4710 (2021).
Larsen, A. E. & Noack, F. Figuring out the panorama drivers of agricultural insecticide use leveraging proof from 100,000 fields. Proc. Natl Acad. Sci. USA 114, 5473–5478 (2017).
Nicholson, C. C. & Williams, N. M. Cropland heterogeneity drives frequency and depth of pesticide use. Environ. Res. Lett. 16, 074008 (2021).
Guinet, M. et al. Fostering temporal crop diversification to scale back pesticide use. Nat. Commun. 14, 7416 (2023).
Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C. & Batáry, P. Past natural farming — harnessing biodiversity-friendly landscapes. Traits Ecol. Evol. 36, 919–930 (2021).
Larsen, A. E., Noack, F. & Powers, L. C. Spillover results of natural agriculture on pesticide use on close by fields. Science 383, eadf2572 (2024).
Ditzler, L., Van Apeldoorn, D. F., Schulte, R. P., Tittonell, P. & Rossing, W. A. Redefining the sector to mobilize three-dimensional range and ecosystem providers on the arable farm. Eur. J. Agron. 122, 126197 (2021).
Weisberger, D., Nichols, V. & Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS ONE 14, e0219847 (2019).
Zhu, Y. et al. Genetic range and illness management in rice. Nature 406, 718–722 (2000).
Shah, Okay. Okay. et al. Diversified crop rotation: an method for sustainable agriculture manufacturing. Adv. Agric. 2021, 8924087 (2021).
Kristoffersen, R., Eriksen, L. B., Nielsen, G. C., Jørgensen, J. R. & Jørgensen, L. N. Administration of Septoria tritici blotch utilizing cultivar mixtures. Plant. Dis. 106, 1341–1349 (2022).
Gibson, A. Okay. Genetic range and illness: the previous, current, and way forward for an outdated concept. Evolution 76, 20–36 (2022).
Kristoffersen, R. et al. The potential of cultivar mixtures to scale back fungicide enter and mitigate fungicide resistance growth. Agron. Maintain. Dev. 40, 1–10 (2020).
Chadfield, V. G., Hartley, S. E. & Redeker, Okay. R. Associational resistance by means of intercropping reduces yield losses to soil‐borne pests and illnesses. New Phytol. 235, 2393–2405 (2022).
Yan, E., Munier-Jolain, N., Martin, P. & Carozzi, M. Intercropping on French farms: lowering pesticide and N fertiliser use whereas sustaining gross margins. Eur. J. Agron. 152, 127036 (2024).
Pumariño, L. et al. Results of agroforestry on pest, illness and weed management: a meta-analysis. Primary Appl. Ecol. 16, 573–582 (2015).
Zhu, X. et al. Reductions in water, soil and nutrient losses and pesticide air pollution in agroforestry practices: a overview of proof and processes. Plant Soil 453, 45–86 (2020).
Tamburini, G. et al. Agricultural diversification promotes a number of ecosystem providers with out compromising yield. Sci. Adv. 6, eaba1715 (2020).
Adeux, G. et al. Multicriteria evaluation of conservation agriculture programs. Entrance. Agron. 4, 999960 (2022).
Alonso-Ayuso, M., Gabriel, J. L., Hontoria, C., Ibáñez, M. Á. & Quemada, M. The quilt crop termination option to designing sustainable cropping programs. Eur. J. Agron. 114, 126000 (2020).
Lu, Y., Wu, Okay., Jiang, Y., Guo, Y. & Desneux, N. Widespread adoption of Bt cotton and insecticide lower promotes biocontrol providers. Nature 487, 362–365 (2012).
Fabre, F., Rousseau, E., Mailleret, L. & Moury, B. Sturdy methods to deploy plant resistance in agricultural landscapes. New Phytol. 193, 1064–1075 (2012).
Duke, S. O., Heap, I., Tranel, P. J. & Bobadilla, L. Okay. What number of methods can nature kill the goose that laid the golden egg? — the numerous mechanisms of advanced glyphosate resistance. Outlooks Pest Manag. 32, 197–202 (2021).
Kaplan, I. & Thaler, J. S. Plant resistance attenuates the consumptive and non‐consumptive impacts of predators on prey. Oikos 119, 1105–1113 (2010).
Bernal, J. S. & Medina, R. F. Agriculture sows pests: how crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores. Curr. Opin. Insect Sci. 26, 76–81 (2018).
Stenberg, J. A., Heil, M., Åhman, I. & Björkman, C. Optimizing crops for biocontrol of pests and illness. Traits Plant. Sci. 20, 698–712 (2015).
Snyder, L. D., Gómez, M. I. & Energy, A. G. Crop varietal mixtures as a method to assist insect pest management, yield, financial, and dietary providers. Entrance. Maintain. Meals Syst. 4, 60 (2020).
Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Protection priming: an adaptive a part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017).
Han, P., Lavoir, A.-V., Rodriguez-Saona, C. & Desneux, N. Backside-up forces in agroecosystems and their potential influence on arthropod pest administration. Annu. Rev. Entomol. 67, 239–259 (2022).
Jayaraman, S. et al. Illness-suppressive soils — past meals manufacturing: a important overview. J. Soil Sci. Plant Nutr. 21, 1437–1465 (2021).
Tooker, J. F., Douglas, M. R. & Krupke, C. H. Neonicotinoid seed therapies: limitations and compatibility with built-in pest administration. Agric. Environ. Lett. 2, ael2017.2008.0026 (2017).
Mourtzinis, S. et al. Neonicotinoid seed therapies of soybean present negligible advantages to US farmers. Sci. Rep. 9, 11207 (2019).
de Lira, A. C., Mascarin, G. M. & Júnior, Í. D. Microsclerotia manufacturing of Metarhizium spp. for twin position as plant biostimulant and management of Spodoptera frugiperda by means of corn seed coating. Fungal Biol. 124, 689–699 (2020).
Abdullah, H. M. et al. Current and future scopes and challenges of plant pest and illness (P&D) monitoring: distant sensing, picture processing, and synthetic intelligence views. Distant Sens. Appl. Soc. Environ. 32, 100996 (2023).
Villamor, D., Ho, T., Al Rwahnih, M., Martin, R. & Tzanetakis, I. Excessive throughput sequencing for plant virus detection and discovery. Phytopathology 109, 716–725 (2019).
Rizvi, S. A. H., George, J., Reddy, G. V., Zeng, X. & Guerrero, A. Newest developments in insect intercourse pheromone analysis and its utility in agricultural pest administration. Bugs 12, 484 (2021).
Witzgall, P., Kirsch, P. & Cork, A. Intercourse pheromones and their influence on pest administration. J. Chem. Ecol. 36, 80–100 (2010).
Liang, L., Li, X., Huang, Y., Qin, Y. & Huang, H. Integrating distant sensing, GIS and dynamic fashions for landscape-level simulation of forest insect disturbance. Ecol. Mannequin. 354, 1–10 (2017).
Zhang, J. et al. Monitoring plant illnesses and pests by means of distant sensing know-how: a overview. Comput. Electron. Agr. 165, 104943 (2019).
Navrozidis, I. et al. Identification of purple spot illness on asparagus crops throughout spatial and spectral scales. Comput. Electron. Agr. 148, 322–329 (2018).
Librán-Embid, F., Klaus, F., Tscharntke, T. & Grass, I. Unmanned aerial autos for biodiversity-friendly agricultural landscapes-a systematic overview. Sci. Complete Environ. 732, 139204 (2020).
Li, W. et al. Classification and detection of bugs from area pictures utilizing deep studying for sensible pest administration: a scientific overview. Ecol. Inform. 66, 101460 (2021).
Ferentinos, Okay. P. Deep studying fashions for plant illness detection and analysis. Comput. Electron. Agr. 145, 311–318 (2018).
Lippi, M. et al. In 2021 twenty ninth Mediterranean Convention on Management and Automation (MED) 342–347 (IEEE, 2021).
Zhong, Y., Gao, J., Lei, Q. & Zhou, Y. A vision-based counting and recognition system for flying bugs in clever agriculture. Sensors 18, 1489 (2018).
Zhang, W., Miao, Z., Li, N., He, C. & Solar, T. Evaluation of present robotic approaches for precision weed administration. Curr. Robotic. Rep. 3, 139–151 (2022).
van Lenteren, J. C., Bolckmans, Okay., Köhl, J., Ravensberg, W. J. & Urbaneja, A. Organic management utilizing invertebrates and microorganisms: loads of new alternatives. BioControl 63, 39–59 (2018).
Abram, P. Okay. et al. Weighing penalties of motion and inaction in invasive insect administration. One Earth 7, 782–793 (2024).
Fallet, P. et al. Laboratory and area trials reveal the potential of a gel formulation of entomopathogenic nematodes for the organic management of fall armyworm caterpillars (Spodoptera frugiperda). Biol. Management. 176, 105086 (2022).
Van Lenteren, J. C. The state of business augmentative organic management: loads of pure enemies, however a irritating lack of uptake. BioControl 57, 1–20 (2012).
Benelli, G., Lucchi, A., Thomson, D. & Ioriatti, C. Intercourse pheromone aerosol units for mating disruption: challenges for a brighter future. Bugs 10, 308 (2019).
Offenberg, J., Jensen, I. C. & Hansen, R. R. Combatting plant illnesses with ant chemical compounds: a overview and meta‐evaluation. J. Appl. Ecol. 59, 25–38 (2022).
Liu, X. et al. Exploring the potential of root-associated micro organism to manage an outbreak weed. Plant Soil 506, 743–765 (2024).
Khamare, Y., Chen, J. & Marble, S. C. Allelopathy and its utility as a weed administration device: a overview. Entrance. Plant Sci. 13, 1034649 (2022).
Vijayakumar, V., Ampatzidis, Y., Schueller, J. Okay. & Burks, T. Sensible spraying applied sciences for precision weed administration: a overview. Sensible Agric. Technol. 6, 100337 (2023).
Zanin, A. R. A. et al. Discount of pesticide utility by way of real-time precision spraying. Sci. Rep. 12, 5638 (2022).
Salcedo, R. et al. Lowering floor and airborne drift losses in younger apple orchards with PWM-controlled spray programs. Comput. Electron. Agr. 189, 106389 (2021).
Xun, L. et al. Superior spraying programs to enhance pesticide saving and scale back spray drift for apple orchards. Summary. Agric. 24, 1526–1546 (2023).
Bordini, I., Naranjo, S. E., Fournier, A. & Ellsworth, P. C. Figuring out selectivity of isocycloseram and afidopyropen and their compatibility with conservation organic management in Arizona cotton. Pest Manag. Sci. 81, 639–653 (2025).
Dammer, Okay. H. Actual‐time variable‐price herbicide utility for weed management in carrots. Weed Res. 56, 237–246 (2016).
Dammer, Okay.-H. & Wartenberg, G. Sensor-based weed detection and utility of variable herbicide charges in actual time. Crop Prot. 26, 270–277 (2007).
Campos, J. et al. Growth of cover vigour maps utilizing UAV for site-specific administration throughout winery spraying course of. Summary. Agric. 20, 1136–1156 (2019).
Dammer, Okay.-H., Thöle, H., Volk, T. & Hau, B. Variable-rate fungicide spraying in actual time by combining a plant cowl sensor and a call assist system. Summary. Agric. 10, 431–442 (2009).
Tackenberg, M., Volkmar, C. & Dammer, Okay. H. Sensor‐primarily based variable‐price fungicide utility in winter wheat. Pest Manag. Sci. 72, 1888–1896 (2016).
Esau, T. J. et al. Spot-application of fungicide for wild blueberry utilizing an automatic prototype variable price sprayer. Summary. Agric. 15, 147–161 (2014).
Karimzadeh, R. & Iranipour, S. Spatial distribution and site-specific spraying of fundamental sucking pests of elm timber. Neotrop. Entomol. 46, 316–323 (2017).
Flores, S. et al. Analysis of mass trapping and bait stations to manage Anastrepha (Diptera: Tephritidae) fruit flies in mango orchards of Chiapas, Mexico. Fla. Entomol. 100, 358–365 (2017).
Meshram, A. T., Vanalkar, A. V., Kalambe, Okay. B. & Badar, A. M. Pesticide spraying robotic for precision agriculture: a categorical literature overview and future traits. J. Subject Robotic. 39, 153–171 (2022).
Tonle, F. B. et al. A street map for growing novel choice assist system (DSS) for disseminating built-in pest administration (IPM) applied sciences. Comput. Electron. Agr. 217, 108526 (2024).
Wyckhuys, Okay. A., Bentley, J. W., Lie, R., Nghiem, L. T. P. & Fredrix, M. Maximizing farm-level uptake and diffusion of organic management improvements in immediately’s digital period. BioControl 63, 133–148 (2018).
Akaka, J. J. et al. Choice assist programs adoption in pesticide administration. Open Res. Eur. 4, 142 (2024).
Lázaro, E., Makowski, D. & Vicent, A. Choice assist programs halve fungicide use in comparison with calendar-based methods with out rising illness threat. Commun. Earth Environ. 2, 224 (2021).
Montull, J. M., Taberner, A., Bøjer, O. & Rydahl, P. in Choice Assist Methods for Weed Administration (eds Chantre, G. R. & González-Andújar, J. L.) 279–298 (Springer, 2020).
Kukar, M., Vračar, P., Košir, D., Pevec, D. & Bosnić, Z. AgroDSS: a call assist system for agriculture and farming. Comput. Electron. Agr. 161, 260–271 (2019).
Dalhaus, T., Finger, R., Tzachor, A. & Möhring, N. Improvements for pesticide utility should think about environmental influence. Nat. Meals 5, 969–971 (2024).
Möhring, N. et al. Pathways for advancing pesticide insurance policies. Nat. Meals 1, 535–540 (2020).
Damalas, C. A. Farmers’ intention to scale back pesticide use: the position of perceived threat of loss within the mannequin of the deliberate conduct idea. Environ. Sci. Pollut. Res. 28, 35278–35285 (2021).
Bakker, L., Sok, J., Van Der Werf, W. & Bianchi, F. Kicking the behavior: what makes and breaks farmers’ intentions to scale back pesticide use? Ecol. Econ. 180, 106868 (2021).
Chèze, B., David, M. & Martinet, V. Understanding farmers’ reluctance to scale back pesticide use: a alternative experiment. Ecol. Econ. 167, 106349 (2020).
Liu, D., Huang, Y. & Luo, X. Farmers’ know-how desire and influencing components for pesticide discount: proof from Hubei Province, China. Environ. Sci. Pollut. Res. 30, 6424–6434 (2023).
Thorburn, C. The rise and demise of built-in pest administration in rice in Indonesia. Bugs 6, 381–408 (2015).
Wyckhuys, Okay. et al. Ecological illiteracy can deepen farmers’ pesticide dependency. Environ. Res. Lett. 14, 093004 (2019).
Bentley, J. W. What farmers don’t know can’t assist them: the strengths and weaknesses of indigenous technical data in Honduras. Agric. Hum. Values 6, 25–31 (1989).
Dalhaus, T., Wu, J. & Möhring, N. Quickly rising subsidization of crop insurance coverage in Europe ignores potential environmental results. Nat. Crops 9, 1938–1939 (2023).
Zachmann, L., McCallum, C. & Finger, R. Spraying for the wonder: pesticide use for visible look in apple manufacturing. Agric. Econ. 55, 621–638 (2024).
Ekesi, S., De Meyer, M., Mohamed, S. A., Virgilio, M. & Borgemeister, C. Taxonomy, ecology, and administration of native and unique fruit fly species in Africa. Annu. Rev. Entomol. 61, 219–238 (2016).
Calderon, R. et al. Evaluation of pesticide residues in greens generally consumed in Chile and Mexico: potential impacts for public well being. J. Meals Compos. Anal. 108, 104420 (2022).
DeLind, L. B. & Howard, P. H. Protected at any scale? Meals scares, meals regulation, and scaled options. Agric. Hum. Values 25, 301–317 (2008).
Montoya, P. et al. Organic management of Anastrepha spp.(Diptera: Tephritidae) in mango orchards by means of augmentative releases of Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae). Biol. Management. 18, 216–224 (2000).
Hendrichs, J., Pereira, R. & Vreysen, M. J. Space-Huge Built-in Pest Administration: Growth and Subject Software (Taylor & Francis, 2021).
Agboka, Okay. M. et al. Financial influence of a classical organic management program: utility to Diachasmimorpha longicaudata in opposition to Bactrocera dorsalis fruit fly in Kenya. BioControl 69, 269–278 (2024).
Agboka, Okay. M. et al. Assessing the potential financial advantages of classical organic management of the invasive fruit fly Bactrocera dorsalis by Fopius arisanus in Kenya. Int. J. Trop. Insect Sci. 44, 1045–1052 (2024).
Acebedo, M. M., Diánez, F. & Santos, M. Almeria’s inexperienced pest administration revolution: a chance that arose from a meals security alert. Agronomy 12, 619 (2022).
Calvo, F., Bolckmans, Okay. & Belda, J. Organic control-based IPM in candy pepper greenhouses utilizing Amblyseius swirskii (Acari: Phytoseiidae). Biocontrol Sci. Technol. 22, 1398–1416 (2012).
Galt, R. E. ‘It simply goes to kill Ticos’: nationwide market regulation and the political ecology of farmers’ pesticide use in Costa Rica. J. Political Ecol. 16, 1–33 (2009).
Mansfield, B. et al. A brand new important social science analysis agenda on pesticides. Agric. Hum. Values 41, 395–412 (2024).
Mesnage, R. et al. Bettering pesticide-use knowledge for the EU. Nat. Ecol. Evol. 5, 1560–1560 (2021).
Silva, V. et al. Pesticide residues with hazard classifications related to non-target species together with people are omnipresent within the atmosphere and farmer residences. Environ. Int. 181, 108280 (2023).