Chluba, J. & Sunyaev, R. Two-photon transitions in hydrogen and cosmological recombination. Astron. Astrophys 480, 629–645 (2008).
Brune, M., Raimond, J., Goy, P., Davidovich, L. & Haroche, S. Realization of a two-photon maser oscillator. Phys. Rev. Lett. 59, 1899 (1987).
D’Angelo, M., Chekhova, M. V. & Shih, Y. Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001).
del Valle, E. et al. Two-photon lasing by a single quantum dot in a high-Q microcavity. Phys. Rev. B 81, 035302 (2010).
Heinze, D., Zrenner, A. & Schumacher, S. Polarization-entangled twin photons from two-photon quantum-dot emission. Phys. Rev. B 95, 245306 (2017).
Sloan, J., Rivera, N., Joannopoulos, J. D. & Soljačić, M. Controlling two-photon emission from superluminal and accelerating index perturbations. Nat. Phys. 18, 67–74 (2022).
Rivera, N., Rosolen, G., Joannopoulos, J. D., Kaminer, I. & Soljačić, M. Making two-photon processes dominate one-photon processes utilizing mid-IR phonon polaritons. Proc. Natl Acad. Sci. USA 114, 13607–13612 (2017).
Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).
Zhong, H.-S. et al. Quantum computational benefit utilizing photons. Science 370, 1460–1463 (2020).
Nikolaus, B., Zhang, D. & Toschek, P. Two-photon laser. Phys. Rev. Lett. 47, 171–173 (1981).
Hayat, A., Ginzburg, P. & Orenstein, M. Statement of two-photon emission from semiconductors. Nat. Photon. 2, 238–241 (2008).
Michler, P. & Portalupi, S. L. Semiconductor Quantum Mild Sources: Fundamentals, Applied sciences and Gadgets (Walter de Gruyter, 2024).
del Valle, E., Gonzalez-Tudela, A., Cancellieri, E., Laussy, F. P. & Tejedor, C. Era of a two-photon state from a quantum dot in a microcavity. New J. Phys. 13, 113014 (2011).
Muñoz, C. S. et al. Emitters of N-photon bundles. Nat. Photon. 8, 550–555 (2014).
Muñoz, C. S., Laussy, F. P., Tejedor, C. & Del Valle, E. Enhanced two-photon emission from a dressed biexciton. New J. Phys. 17, 123021 (2015).
Sánchez Muñoz, C., Laussy, F. P., Valle, E. D., Tejedor, C. & González-Tudela, A. Filtering multiphoton emission from state-of the-art cavity quantum electrodynamics. Optica 5, 14–26 (2018).
Chiarella, G., Frank, T., Farrera, P. & Rempe, G. Two-cavity-mediated photon-pair emission by one atom. Optica Quantum 2, 346–350 (2024).
Schumacher, S. et al. Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting. Decide. Categorical 20, 5335–5342 (2012).
Seidelmann, T. et al. From robust to weak temperature dependence of the two-photon entanglement ensuing from the biexciton cascade inside a cavity. Phys. Rev. B 99, 245301 (2019).
Ota, Y., Iwamoto, S., Kumagai, N. & Arakawa, Y. Spontaneous two-photon emission from a single quantum dot. Phys. Rev. Lett. 107, 233602 (2011).
Qian, C. et al. Two-photon rabi splitting in a coupled system of a nanocavity and exciton complexes. Phys. Rev. Lett. 120, 213901 (2018).
Wei, Y. et al. Tailoring solid-state single-photon sources with stimulated emissions. Nat. Nanotechnol. 17, 470–476 (2022).
Liu, S. et al. Dynamic resonance fluorescence in solid-state cavity quantum electrodynamics. Nat. Photon. 18, 318–324 (2024).
Ding, X. et al. On-demand single photons with excessive extraction effectivity and near-unity indistinguishability from a resonantly pushed quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).
Somaschi, N. et al. Close to-optimal single-photon sources within the stable state. Nat. Photon. 10, 340–345 (2016).
Tomm, N. et al. A shiny and quick supply of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).
Liu, J. et al. A solid-state supply of strongly entangled photon pairs with excessive brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).
Müller, M., Bounouar, S., Jöns, Okay. D., Glässl, M. & Michler, P. On-demand technology of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).
Cygorek, M., Keeling, J., Lovett, B. W. & Gauger, E. M. Sublinear scaling in non-markovian open quantum methods simulations. Phys. Rev. X 14, 011010 (2024).
Hargart, F. et al. Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states. Phys. Rev. B 93, 115308 (2016).
Moody, G., Chang, L., Steiner, T. J. & Bowers, J. E. Chip-scale nonlinear photonics for quantum mild technology. AVS Quantum Sci. 2, 041702 (2020).
Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).
Senellart, P., Solomon, G. & White, A. Excessive-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).
Kaniber, M. et al. Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities. Phys. Rev. B 77, 161303(R) (2008).
Winger, M. et al. Rationalization of photon correlations within the far-off-resonance optical emission from a quantum-dot–cavity system. Phys. Rev. Lett. 103, 207403 (2009).
Ates, S. et al. Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy. Nat. Photon. 3, 724–728 (2009).
Le Jeannic, H. et al. Dynamical photon–photon interplay mediated by a quantum emitter. Nat. Phys. 18, 1191–1195 (2022).
Tomm, N. et al. Photon sure state dynamics from a single synthetic atom. Nat. Phys. 19, 857–862 (2023).
Heindel, T. et al. A shiny triggered twin-photon supply within the stable state. Nat. Commun. 8, 14870 (2017).
Fischer, Okay. A. et al. Signatures of two-photon pulses from a quantum two-level system. Nat. Phys. 13, 649–654 (2017).
Trotta, R. et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 7, 10375 (2016).
Chen, Y. et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat. Commun. 7, 10387 (2016).
Huber, D. et al. Pressure-tunable GaAs quantum dot: an almost dephasing-free supply of entangled photon pairs on demand. Phys. Rev. Lett. 121, 033902 (2018).
Chen, C. et al. Wavelength-tunable high-fidelity entangled photon sources enabled by twin stark results. Nat. Commun. 15, 5792 (2024).
Lin, Z. & Vučković, J. Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities. Phys. Rev. B 81, 035301 (2010).
Tomm, N. et al. Tuning the mode splitting of a semiconductor microcavity with uniaxial stress. Phys. Rev. Appl. 15, 054061 (2021).
Wang, H. et al. In the direction of optimum single-photon sources from polarized microcavities. Nat. Photon. 13, 770–775 (2019).
Müller, M. et al. Quantum-dot single-photon sources for entanglement enhanced interferometry. Phys. Rev. Lett. 118, 257402 (2017).
Heinze, D., Breddermann, D., Zrenner, A. & Schumacher, S. A quantum dot single-photon supply with on-the-fly all-optical polarization management and timed emission. Nat. Commun. 6, 8473 (2015).
Jonas, B. et al. Nonlinear down-conversion in a single quantum dot. Nat. Commun. 13, 1387 (2022).
Koshino, Okay. et al. Statement of the three-state dressed states in circuit quantum electrodynamics. Phys. Rev. Lett. 110, 263601 (2013).
Gasparinetti, S. et al. Two-photon resonance fluorescence of a ladder-type atomic system. Phys. Rev. A 100, 033802 (2019).
Ardelt, P.-L. et al. Optical management of nonlinearly dressed states in a person quantum dot. Phys. Rev. B 93, 165305 (2016).
Cygorek, M. & Gauger, E. M. ACE: a general-purpose non-markovian open quantum methods simulation toolkit primarily based on course of tensors. J. Chem. Phys. 181, 074111 (2024).
Cygorek, M. et al. Simulation of open quantum methods by automated compression of arbitrary environments. Nat. Phys. 18, 662–668 (2022).
Krummheuer, B., Axt, V. M., Kuhn, T., D’Amico, I. & Rossi, F. Pure dephasing and phonon dynamics in GaAs- and GaN-based quantum dot constructions: interaction between materials parameters and geometry. Phys. Rev. B 71, 235329 (2005).
del Valle, E., Gonzalez-Tudela, A., Laussy, F. P., Tejedor, C. & Hartmann, M. J. Idea of frequency-filtered and time-resolved N-photon correlations. Phys. Rev. Lett. 109, 183601 (2012).
Cosacchi, M. et al. Accuracy of the quantum regression theorem for photon emission from a quantum dot. Phys. Rev. Lett. 127, 100402 (2021).
Daley, A. J. Quantum trajectories and open many-body quantum methods. Adv. Phys. 63, 77–149 (2014).
Kiraz, A., Atatüre, M. & Imamoğlu, A. Quantum-dot single-photon sources: prospects for functions in linear optics quantum-information processing. Phys. Rev. A 69, 032305 (2004).
Cygorek, M. et al. Signatures of cooperative emission in photon coincidence: superradiance versus measurement-induced cooperativity. Phys. Rev. A 107, 023718 (2023).
Cygorek, M. et al. Comparability of various concurrences characterizing photon pairs generated within the biexciton cascade in quantum dots coupled to microcavities. Phys. Rev. B 98, 045303 (2018).
Liu, S. et al. Tremendous-resolved snapshot hyperspectral imaging of solid-state quantum emitters for high-throughput built-in quantum applied sciences. Nat. Photon. 18, 967–974 (2024).
Liu, S. Quantum correlation of spontaneous two-photon emission from a quantum dot. figshare https://doi.org/10.6084/m9.figshare.29155466.v1 (2025).