Close Menu
    Facebook X (Twitter) YouTube LinkedIn
    Trending
    • Afghanistan humanitarian crisis causes parents to sell children – BBC News
    • Pope criticizes political nationalism, prays for reconciliation and dialogue – National
    • A Cuban woman surprises with the spiritual remedy she uses when she’s facing problems at work and closed paths: “You will remember me.”
    • When Chinese manufacturing met Small Town, USA : Planet Money : NPR
    • ‘Own identity’ – Jobe Bellingham follows similar path to brother Jude
    • Erin Burnett describes 21-hour ordeal getting out of Ukraine
    • Jimmy Carter’s grandson: He has a legacy of putting his ‘faith into action’
    • LEGO Fortnite is AMAZING!
    Facebook X (Twitter) YouTube LinkedIn
    MORSHEDI
    • Home
      • Spanish
      • Persian
      • Swedish
    • Latest
    • World
    • Economy
    • Shopping
    • Politics
    • Article
    • Sports
    • Youtube
    • More
      • Art
      • Author
      • Books
      • Celebrity
      • Countries
      • Did you know
      • Environment
      • Entertainment
      • Food
      • Gaming
      • Fashion
      • Health
      • Herbs
      • History
      • IT
      • Funny
      • Opinions
      • Poets & philosopher
      • Mixed
      • Mystery
      • Research & Science
      • Spiritual
      • Stories
      • Strange
      • Technology
      • Trending
      • Travel
      • space
      • United Nation
      • University
      • war
      • World Leaders
    MORSHEDI
    Home » Chinese herbal medicine-derived extracellular vesicles as novel biotherapeutic tools: present and future | Journal of Translational Medicine
    Herbs

    Chinese herbal medicine-derived extracellular vesicles as novel biotherapeutic tools: present and future | Journal of Translational Medicine

    morshediBy morshediFebruary 24, 2025No Comments20 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Chinese herbal medicine-derived extracellular vesicles as novel biotherapeutic tools: present and future | Journal of Translational Medicine
    Share
    Facebook Twitter LinkedIn Pinterest Email


  • Correction to. Minimal info for research of extracellular vesicles (MISEV2023): From primary to superior approaches, J Extracell Vesicles 13(5) (2024) e12451. https://doi.org/10.1002/jev2.12451

  • van Niel G, et al. Shedding mild on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28. https://doi.org/10.1038/nrm.2017.125.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He B, et al. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles. Nat Crops. 2021;7(3):342–52. https://doi.org/10.1038/s41477-021-00863-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang S, et al. Intestine-liver axis: potential mechanisms of motion of food-derived extracellular vesicles. J Extracell Vesicles. 2024;13(6):e12466. https://doi.org/10.1002/jev2.12466.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez-Erviti L, et al. Supply of siRNA to the mouse mind by systemic injection of focused exosomes. Nat Biotechnol. 2011;29(4):341–5. https://doi.org/10.1038/nbt.1807.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alzahrani FA, et al. Plant-derived extracellular vesicles and their thrilling potential as the way forward for Subsequent-Era Drug Supply. Biomolecules. 2023;13(5). https://doi.org/10.3390/biom13050839.

  • Halperin W, Jensen WA. Ultrastructural adjustments throughout development and embryogenesis in carrot cell cultures. J Ultrastruct Res. 1967;18(3):428–43. https://doi.org/10.1016/s0022-5320(67)80128-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Regente M, et al. Vesicular fractions of sunflower apoplastic fluids are related to potential exosome marker proteins. FEBS Lett. 2009;583(20):3363–6. https://doi.org/10.1016/j.febslet.2009.09.041.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, et al. Unlocking the Medicinal potential of plant-derived extracellular vesicles: present progress and future views. Int J Nanomed. 2024;19:4877–92. https://doi.org/10.2147/ijn.S463145.

    Article 

    Google Scholar
     

  • Ren JL, et al. Efficacy analysis, lively substances, and multitarget exploration of natural medication. Tendencies Endocrinol Metab. 2023;34(3):146–57. https://doi.org/10.1016/j.tem.2023.01.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Q, et al. Consensus assertion on analysis and software of Chinese language natural medication derived extracellular vesicles-like particles (2023 version). Chin Herb Med. 2024;16(1):3–12. https://doi.org/10.1016/j.chmed.2023.11.002.

    Article 
    PubMed 

    Google Scholar
     

  • Lai W, et al. Zingiber officinale: a scientific evaluate of Botany, Phytochemistry and Pharmacology of Intestine Microbiota-related gastrointestinal advantages. Am J Chin Med. 2022;50(4):1007–42. https://doi.org/10.1142/s0192415x22500410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu H, He W. Ginger: a consultant materials of herb-derived exosome-like nanoparticles. Entrance Nutr. 2023;10:1223349. https://doi.org/10.3389/fnut.2023.1223349.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao X, et al. Advances within the research of plant-derived extracellular vesicles within the skeletal muscle system. Pharmacol Res. 2024;204:107202. https://doi.org/10.1016/j.phrs.2024.107202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng J, et al. Plant-Derived Vesicle-Like nanoparticles as Promising Biotherapeutic Instruments: Current and Future. Adv Mater. 2023;35(24):e2207826. https://doi.org/10.1002/adma.202207826.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li A, et al. Plant-derived nanovesicles: additional exploration of biomedical operate and software potential. Acta Pharm Sin B. 2023;13(8):3300–20. https://doi.org/10.1016/j.apsb.2022.12.022.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang LY, et al. Rising drug supply vectors: Engineering of Plant-Derived nanovesicles and their purposes in Biomedicine. Int J Nanomed. 2024;19:2591–610. https://doi.org/10.2147/ijn.S454794.

    Article 

    Google Scholar
     

  • He B, et al. Plant extracellular vesicles: Trojan horses of cross-kingdom warfare. FASEB Bioadv. 2021;3(9):657–64. https://doi.org/10.1096/fba.2021-00040.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ly NP, et al. Plant-derived nanovesicles: present understanding and purposes for most cancers remedy. Bioact Mater. 2023;22:365–83. https://doi.org/10.1016/j.bioactmat.2022.10.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui Y, et al. Plant extracellular vesicles. Protoplasma. 2020;257(1):3–12. https://doi.org/10.1007/s00709-019-01435-6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mu N, et al. Plant-Derived Exosome-Like nanovesicles: present progress and prospects. Int J Nanomed. 2023;18:4987–5009. https://doi.org/10.2147/ijn.S420748.

    Article 
    CAS 

    Google Scholar
     

  • Li X, et al. Biogenesis and performance of Multivesicular our bodies in Plant Immunity. Entrance Plant Sci. 2018;9:979. https://doi.org/10.3389/fpls.2018.00979.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, operate, and biomedical purposes of exosomes. Science. 2020;367(6478). https://doi.org/10.1126/science.aau6977.

  • Jadli AS, et al. Inside(sight) of tiny communicator: exosome biogenesis, secretion, and uptake. Mol Cell Biochem. 2020;467(1–2):77–94. https://doi.org/10.1007/s11010-020-03703-z.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • An Q, et al. Multivesicular our bodies take part in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol. 2006;8(6):1009–19. https://doi.org/10.1111/j.1462-5822.2006.00683.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, et al. An exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell. 2010;22(12):4009–30. https://doi.org/10.1105/tpc.110.080697.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, et al. Protein secretion in crops: standard and unconventional pathways and new methods. J Exp Bot. 2017;69(1):21–37. https://doi.org/10.1093/jxb/erx262.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui Y, et al. A complete-cell electron tomography mannequin of vacuole biogenesis in Arabidopsis root cells. Nat Crops. 2019;5(1):95–105. https://doi.org/10.1038/s41477-018-0328-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doyle LM, Wang MZ. Overview of Extracellular vesicles, their origin, composition, function, and strategies for Exosome isolation and evaluation. Cells. 2019;8(7). https://doi.org/10.3390/cells8070727.

  • Manjithaya R, Subramani S. Position of autophagy in unconventional protein secretion. Autophagy. 2010;6(5):650–1. https://doi.org/10.4161/auto.6.5.12066.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Movahed N, et al. Turnip Mosaic Virus Elements are launched into the Extracellular area by vesicles in contaminated leaves. Plant Physiol. 2019;180(3):1375–88. https://doi.org/10.1104/pp.19.00381.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • An Q, et al. Multivesicular compartments proliferate in vulnerable and resistant MLA12-barley leaves in response to an infection by the biotrophic powdery mildew fungus. New Phytol. 2006;172(3):563–76. https://doi.org/10.1111/j.1469-8137.2006.01844.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Regente M, et al. Plant extracellular vesicles are integrated by a fungal pathogen and inhibit its development. J Exp Bot. 2017;68(20):5485–95. https://doi.org/10.1093/jxb/erx355.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu FS, et al. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from contemporary Rehmanniae Radix, ameliorated lipopolysaccharide-induced acute lung harm and intestine dysbiosis. Biomed Pharmacother. 2023;165:115007. https://doi.org/10.1016/j.biopha.2023.115007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang M, et al. Edible ginger-derived nanoparticles: a novel therapeutic method for the prevention and remedy of inflammatory bowel illness and colitis-associated most cancers. Biomaterials. 2016;101:321–40. https://doi.org/10.1016/j.biomaterials.2016.06.018.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan S, et al. Dandelion-derived vesicles-laden hydrogel dressings able to neutralizing Staphylococcus aureus exotoxins for the care of invasive wounds. J Management Launch. 2024;368:355–71. https://doi.org/10.1016/j.jconrel.2024.02.045.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao M, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma development. J Immunother Most cancers. 2019;7(1):326. https://doi.org/10.1186/s40425-019-0817-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Y, et al. Edible pueraria lobata-derived exosome-like nanovesicles ameliorate dextran sulfate sodium-induced colitis related lung irritation by way of modulating macrophage polarization. Biomed Pharmacother. 2024;170:116098. https://doi.org/10.1016/j.biopha.2023.116098.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang JH, et al. Yam-derived exosome-like nanovesicles stimulate osteoblast formation and forestall osteoporosis in mice. J Management Launch. 2023;355:184–98. https://doi.org/10.1016/j.jconrel.2023.01.071.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Q, et al. An enzyme-based system for extraction of small extracellular vesicles from crops. Sci Rep. 2023;13(1):13931. https://doi.org/10.1038/s41598-023-41224-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutter BD, Innes RW. Extracellular vesicles remoted from the Leaf Apoplast carry stress-response proteins. Plant Physiol. 2017;173(1):728–41. https://doi.org/10.1104/pp.16.01253.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, et al. Characterization of and isolation strategies for plant leaf nanovesicles and small extracellular vesicles. Nanomedicine. 2020;29:102271. https://doi.org/10.1016/j.nano.2020.102271.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Leary BM, et al. The infiltration-centrifugation approach for extraction of apoplastic fluid from plant leaves utilizing Phaseolus vulgaris for instance. J Vis Exp. 2014;94. https://doi.org/10.3791/52113.

  • Du J, et al. Plant-derived phosphocholine facilitates mobile uptake of anti-pulmonary fibrotic HJT-sRNA-m7. Sci China Life Sci. 2019;62(3):309–20. https://doi.org/10.1007/s11427-017-9026-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, et al. Natural decoctosome is a novel type of medication. Sci China Life Sci. 2019;62(3):333–48. https://doi.org/10.1007/s11427-018-9508-0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang Z, Liu Okay. Plant-derived extracellular vesicles as oral drug supply carriers. J Management Launch. 2022;350:389–400. https://doi.org/10.1016/j.jconrel.2022.08.046.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gebeyehu A, et al. Position of Exosomes for supply of chemotherapeutic medication. Crit Rev Ther Drug Provider Syst. 2021;38(5):53–97. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2021036301.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, et al. Arrowtail RNA for Ligand Show on Ginger Exosome-like nanovesicles to systemic ship siRNA for Most cancers suppression. Sci Rep. 2018;8(1):14644. https://doi.org/10.1038/s41598-018-32953-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, et al. Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis can inhibit the proliferation of Hepatocellular Carcinoma Cells with Higher Security Profile. Int J Nanomed. 2021;16:1575–86. https://doi.org/10.2147/ijn.S293067.

    Article 

    Google Scholar
     

  • Mu J, et al. Interspecies communication between plant and mouse intestine host cells by way of edible plant derived exosome-like nanoparticles. Mol Nutr Meals Res. 2014;58(7):1561–73. https://doi.org/10.1002/mnfr.201300729.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Théry C, et al. Isolation and characterization of exosomes from cell tradition supernatants and organic fluids. Curr Protoc Cell Biol. 2006;Chap 3:Unit322. https://doi.org/10.1002/0471143030.cb0322s30.

    Article 

    Google Scholar
     

  • Théry C, et al. Minimal info for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the Worldwide Society for Extracellular Vesicles and replace of the MISEV2014 tips. J Extracell Vesicles. 2018;7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eivindvik Okay, Sjogren CE. Physicochemical properties of iodixanol. Acta Radiol Suppl. 1995;399:32–8. https://doi.org/10.1177/0284185195036s39904.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edelstein C, et al. Benefits and limitations of density gradient ultracentrifugation within the fractionation of human serum lipoproteins: position of salts and sucrose. J Lipid Res. 1984;25(6):630–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nordin JZ, et al. Ultrafiltration with size-exclusion liquid chromatography for top yield isolation of extracellular vesicles preserving intact biophysical and useful properties. Nanomedicine. 2015;11(4):879–83. https://doi.org/10.1016/j.nano.2015.01.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haraszti RA, et al. Exosomes produced from 3D cultures of MSCs by tangential Stream Filtration Present Increased Yield and Improved Exercise. Mol Ther. 2018;26(12):2838–47. https://doi.org/10.1016/j.ymthe.2018.09.015.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng X, et al. Characterization and bioassays of extracellular vesicles extracted by tangential movement filtration. Regen Med. 2022;17(3):141–54. https://doi.org/10.2217/rme-2021-0038.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ansari FJ, et al. Comparability of the effectivity of ultrafiltration, precipitation, and ultracentrifugation strategies for exosome isolation. Biochem Biophys Rep. 2024;38:101668. https://doi.org/10.1016/j.bbrep.2024.101668.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suharta S, et al. Plant-derived exosome-like nanoparticles: a concise evaluate on its extraction strategies, content material, bioactivities, and potential as useful meals ingredient. J Meals Sci. 2021;86(7):2838–50. https://doi.org/10.1111/1750-3841.15787.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You JY, et al. Isolation of cabbage exosome-like nanovesicles and investigation of their organic actions in human cells. Bioact Mater. 2021;6(12):4321–32. https://doi.org/10.1016/j.bioactmat.2021.04.023.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Böing AN, et al. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2014;3. https://doi.org/10.3402/jev.v3.23430.

  • Akbar A, et al. Methodologies to isolate and purify medical Grade Extracellular vesicles for medical purposes. Cells. 2022;11(2). https://doi.org/10.3390/cells11020186.

  • Fortunato D, et al. Selective isolation of extracellular vesicles from minimally processed human plasma as a translational technique for liquid biopsies. Biomark Res. 2022;10(1):57. https://doi.org/10.1186/s40364-022-00404-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen A, et al. Isolation of Extracellular vesicles from Arabidopsis. Curr Protoc. 2022;2(1):e352. https://doi.org/10.1002/cpz1.352.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowal J, et al. Proteomic comparability defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113(8):E968–77. https://doi.org/10.1073/pnas.1521230113.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rider MA, et al. ExtraPEG: a polyethylene glycol-based Methodology for Enrichment of Extracellular vesicles. Sci Rep. 2016;6:23978. https://doi.org/10.1038/srep23978.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalarikkal SP, et al. An economical polyethylene glycol-based methodology for the isolation of useful edible nanoparticles from ginger rhizomes. Sci Rep. 2020;10(1):4456. https://doi.org/10.1038/s41598-020-61358-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webber J, Clayton A. How pure are your vesicles? J Extracell Vesicles. 2013;2. https://doi.org/10.3402/jev.v2i0.19861.

  • Jang J, et al. Isolation of high-purity and high-stability exosomes from ginseng. Entrance Plant Sci. 2022;13:1064412. https://doi.org/10.3389/fpls.2022.1064412.

    Article 
    PubMed 

    Google Scholar
     

  • Yin L, et al. Characterization of the MicroRNA Profile of Ginger Exosome-like nanoparticles and their anti-inflammatory results in Intestinal Caco-2 cells. J Agric Meals Chem. 2022;70(15):4725–34. https://doi.org/10.1021/acs.jafc.1c07306.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai C, et al. Analysis standing and challenges of plant-derived exosome-like nanoparticles. Biomed Pharmacother. 2024;174:116543. https://doi.org/10.1016/j.biopha.2024.116543.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renaud JP, et al. Cryo-EM in drug discovery: achievements, limitations and prospects. Nat Rev Drug Discov. 2018;17(7):471–92. https://doi.org/10.1038/nrd.2018.77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lengthy D, et al. Atomic Drive Microscopy to Characterize Ginger lipid-derived nanoparticles (GLDNP). Bio Protoc. 2021;11(7):e3969. https://doi.org/10.21769/BioProtoc.3969.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sitar S, et al. Dimension characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal Chem. 2015;87(18):9225–33. https://doi.org/10.1021/acs.analchem.5b01636.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fortunato D, et al. Alternatives and pitfalls of fluorescent labeling methodologies for Extracellular Vesicle profiling on high-resolution single-particle platforms. Int J Mol Sci. 2021;22(19). https://doi.org/10.3390/ijms221910510.

  • Cao Y, et al. Morinda Officinalis-derived extracellular vesicle-like particles: anti-osteoporosis impact by regulating MAPK signaling pathway. Phytomedicine. 2024;129:155628. https://doi.org/10.1016/j.phymed.2024.155628.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teng Y, et al. Plant-derived exosomal MicroRNAs form the intestine microbiota. Cell Host Microbe. 2018;24(5):637–52.e8. https://doi.org/10.1016/j.chom.2018.10.001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez MI, et al. Technical challenges of working with extracellular vesicles. Nanoscale. 2018;10(3):881–906. https://doi.org/10.1039/c7nr08360b.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang M, et al. Plant derived edible nanoparticles as a brand new therapeutic method towards illnesses. Tissue Limitations. 2016;4(2):e1134415. https://doi.org/10.1080/21688370.2015.1134415.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng L, et al. Aloe derived nanovesicle as a useful provider for indocyanine inexperienced encapsulation and phototherapy. J Nanobiotechnol. 2021;19(1):439. https://doi.org/10.1186/s12951-021-01195-7.

    Article 
    CAS 

    Google Scholar
     

  • Raimondo S, et al. Citrus limon-derived nanovesicles inhibit most cancers cell proliferation and suppress CML xenograft development by inducing TRAIL-mediated cell demise. Oncotarget. 2015;6(23):19514–27. https://doi.org/10.18632/oncotarget.4004.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birnbaum F, et al. [Intracameral application of corticosteroids for treating severe endothelial rejection after penetrating keratoplasty]. Ophthalmologe. 2007;104(9):813–6. https://doi.org/10.1007/s00347-007-1615-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai Q, et al. Crops ship small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science. 2018;360(6393):1126–9. https://doi.org/10.1126/science.aar4142.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, et al. Efficient strategies for isolation and purification of extracellular vesicles from crops. J Integr Plant Biol. 2021;63(12):2020–30. https://doi.org/10.1111/jipb.13181.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinedo M, et al. A name for Rigor and standardization in plant extracellular vesicle analysis. J Extracell Vesicles. 2021;10(6):e12048. https://doi.org/10.1002/jev2.12048.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren J, et al. From buildings to features: insights into exosomes as promising drug supply autos. Biomater Sci. 2016;4(6):910–21. https://doi.org/10.1039/c5bm00583c.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi Q, et al. Present understanding of plant-derived exosome-like nanoparticles in regulating the inflammatory response and immune system microenvironment. Pharmacol Res. 2023;190:106733. https://doi.org/10.1016/j.phrs.2023.106733.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, et al. Anti-glioma impact of ginseng-derived exosomes-like nanoparticles by lively blood-brain-barrier penetration and tumor microenvironment modulation. J Nanobiotechnol. 2023;21(1):253. https://doi.org/10.1186/s12951-023-02006-x.

    Article 
    CAS 

    Google Scholar
     

  • Li S, et al. Panax notoginseng: derived exosome-like nanoparticles attenuate ischemia reperfusion harm by way of altering microglia polarization. J Nanobiotechnol. 2023;21(1):416. https://doi.org/10.1186/s12951-023-02161-1.

    Article 
    CAS 

    Google Scholar
     

  • Sundaram Okay, et al. Plant-derived exosomal nanoparticles inhibit pathogenicity of Porphyromonas gingivalis. iScience. 2019;21:308–27. https://doi.org/10.1016/j.isci.2019.10.032.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ju S, et al. Grape exosome-like nanoparticles induce intestinal stem cells and defend mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345–57. https://doi.org/10.1038/mt.2013.64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang X, et al. Ginger-derived nanoparticles defend towards alcohol-induced liver harm. J Extracell Vesicles. 2015;4:28713. https://doi.org/10.3402/jev.v4.28713.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and performance. Cell. 2004;116(2):281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao J, et al. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible vegetables and fruit. PeerJ. 2018;6:e5186. https://doi.org/10.7717/peerj.5186.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isaac R, et al. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33(9):1744–62. https://doi.org/10.1016/j.cmet.2021.08.006.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan L, et al. Ginger exosome-like nanoparticle-derived miRNA therapeutics: a strategic inhibitor of intestinal irritation. J Adv Res. 2024. https://doi.org/10.1016/j.jare.2024.04.001.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu H, et al. Figuring out the potential of miRNAs in Houttuynia cordata-derived Exosome-Like nanoparticles towards respiratory RNA viruses. Int J Nanomed. 2023;18:5983–6000. https://doi.org/10.2147/ijn.S425173.

    Article 
    CAS 

    Google Scholar
     

  • Chin AR, et al. Cross-kingdom inhibition of breast most cancers development by plant miR159. Cell Res. 2016;26(2):217–28. https://doi.org/10.1038/cr.2016.13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Q, et al. Rhizoma Drynariae-derived nanovesicles reverse osteoporosis by potentiating osteogenic differentiation of human bone marrow mesenchymal stem cells by way of concentrating on ERα signaling. Acta Pharm Sin B. 2024;14(5):2210–27. https://doi.org/10.1016/j.apsb.2024.02.005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woith E, et al. Plant Extracellular vesicles and nanovesicles: concentrate on secondary metabolites, proteins and lipids with views on their potential and sources. Int J Mol Sci. 2021;22(7). https://doi.org/10.3390/ijms22073719.

  • Date AA, et al. Nanoparticles for oral supply: design, analysis and state-of-the-art. J Management Launch. 2016;240:504–26. https://doi.org/10.1016/j.jconrel.2016.06.016.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ensign LM, et al. Oral drug supply with polymeric nanoparticles: the gastrointestinal mucus obstacles. Adv Drug Deliv Rev. 2012;64(6):557–70. https://doi.org/10.1016/j.addr.2011.12.009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Q, et al. Pure lipid nanoparticles extracted from Morus nigra L. leaves for focused remedy of hepatocellular carcinoma by way of the oral route. J Nanobiotechnol. 2024;22(1):4. https://doi.org/10.1186/s12951-023-02286-3.

    Article 
    CAS 

    Google Scholar
     

  • Yang M, et al. An environment friendly methodology to isolate lemon derived extracellular vesicles for gastric most cancers remedy. J Nanobiotechnol. 2020;18(1):100. https://doi.org/10.1186/s12951-020-00656-9.

    Article 
    CAS 

    Google Scholar
     

  • Xin T, et al. Tendencies in herbgenomics. Sci China Life Sci. 2019;62(3):288–308. https://doi.org/10.1007/s11427-018-9352-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, et al. Protecting impact of Contemporary/Dry dandelion extracts on APAP-Overdose-Induced Acute Liver Harm. Chin J Integr Med. 2022;28(8):683–92. https://doi.org/10.1007/s11655-021-3295-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, et al. Comparability of the antioxidant actions and polysaccharide characterization of Contemporary and Dry Dendrobium officinale Kimura et Migo. Molecules. 2022;27(19). https://doi.org/10.3390/molecules27196654.

  • Gu JF, et al. Comparability on hypoglycemic and antioxidant actions of the contemporary and dried Portulaca oleracea L. in insulin-resistant HepG2 cells and streptozotocin-induced C57BL/6J diabetic mice. J Ethnopharmacol. 2015;161:214–23. https://doi.org/10.1016/j.jep.2014.12.002.

    Article 
    PubMed 

    Google Scholar
     

  • Vidal-Gallardo A, et al. The position of intestine microbiome within the Pathogenesis and the remedy of Inflammatory Bowel illnesses. Cureus. 2024;16(2):e54569. https://doi.org/10.7759/cureus.54569.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medzhitov R. Origin and physiological roles of irritation. Nature. 2008;454(7203):428–35. https://doi.org/10.1038/nature07201.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito Y, et al. Uptake of MicroRNAs from Exosome-Like nanovesicles of Edible Plant Juice by Rat Enterocytes. Int J Mol Sci. 2021;22(7). https://doi.org/10.3390/ijms22073749.

  • Liu C, et al. Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis remedy. J Nanobiotechnol. 2022;20(1):206. https://doi.org/10.1186/s12951-022-01421-w.

    Article 
    CAS 

    Google Scholar
     

  • Gao C, et al. Turmeric-derived nanovesicles as novel nanobiologics for focused remedy of ulcerative colitis. Theranostics. 2022;12(12):5596–614. https://doi.org/10.7150/thno.73650.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, et al. Exosome-like nanoparticles from Ginger rhizomes Inhibited NLRP3 inflammasome activation. Mol Pharm. 2019;16(6):2690–9. https://doi.org/10.1021/acs.molpharmaceut.9b00246.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu B, et al. Protecting position of Shiitake Mushroom-Derived Exosome-Like nanoparticles in D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Harm in mice. Vitamins. 2020;12(2). https://doi.org/10.3390/nu12020477.

  • Sriwastva MK, et al. Exosome-like nanoparticles from Mulberry bark stop DSS-induced colitis by way of the AhR/COPS8 pathway. EMBO Rep. 2022;23(3):e53365. https://doi.org/10.15252/embr.202153365.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu J, et al. Edible Pueraria lobata-derived exosomes promote M2 macrophage polarization. Molecules. 2022;27(23). https://doi.org/10.3390/molecules27238184.

  • Chota A, et al. Potential remedy of breast and Lung Most cancers utilizing Dicoma anomala, an African Medicinal Plant. Molecules. 2020;25(19). https://doi.org/10.3390/molecules25194435.

  • Liang J, et al. Sphingosine-1-phosphate hyperlinks persistent STAT3 activation, continual intestinal irritation, and growth of colitis-associated most cancers. Most cancers Cell. 2013;23(1):107–20. https://doi.org/10.1016/j.ccr.2012.11.013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Q, et al. Pure exosome-like nanovesicles from edible tea flowers suppress metastatic breast most cancers by way of ROS era and microbiota modulation. Acta Pharm Sin B. 2022;12(2):907–23. https://doi.org/10.1016/j.apsb.2021.08.016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han X, et al. Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the chilly tumor microenvironment. Mol Ther. 2022;30(1):327–40. https://doi.org/10.1016/j.ymthe.2021.08.028.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv Y, et al. Ginseng-derived nanoparticles reprogram macrophages to control arginase-1 launch for ameliorating T cell exhaustion in tumor microenvironment. J Exp Clin Most cancers Res. 2023;42(1):322. https://doi.org/10.1186/s13046-023-02888-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim Okay, et al. Anti-metastatic results of Plant Sap-Derived Extracellular vesicles in a 3D Microfluidic Most cancers Metastasis Mannequin. J Funct Biomater. 2020;11(3). https://doi.org/10.3390/jfb11030049.

  • Yan G, et al. Brucea Javanica derived exosome-like nanovesicles ship miRNAs for most cancers remedy. J Management Launch. 2024;367:425–40. https://doi.org/10.1016/j.jconrel.2024.01.060.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Narauskaitė D, et al. Extracellular vesicles in pores and skin Wound Therapeutic. Prescription drugs (Basel). 2021;14(8). https://doi.org/10.3390/ph14080811.

  • Yang S, et al. Ginseng-derived nanoparticles induce pores and skin cell proliferation and promote wound therapeutic. J Ginseng Res. 2023;47(1):133–43. https://doi.org/10.1016/j.jgr.2022.07.005.

    Article 
    PubMed 

    Google Scholar
     

  • Kim MK, et al. The antioxidant impact of small extracellular vesicles derived from Aloe vera peels for Wound Therapeutic. Tissue Eng Regen Med. 2021;18(4):561–71. https://doi.org/10.1007/s13770-021-00367-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim M, Park JH. Isolation of Aloe saponaria-derived extracellular vesicles and investigation of their potential for continual Wound Therapeutic. Pharmaceutics. 2022;14(9). https://doi.org/10.3390/pharmaceutics14091905.

  • Şahin F, et al. In Vitro Wound Therapeutic exercise of wheat-derived nanovesicles. Appl Biochem Biotechnol. 2019;188(2):381–94. https://doi.org/10.1007/s12010-018-2913-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang F, et al. The position and purposes of extracellular vesicles in osteoporosis. Bone Res. 2024;12(1):4. https://doi.org/10.1038/s41413-023-00313-5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bijlsma AY, et al. Chronology of age-related illness definitions: osteoporosis and sarcopenia. Ageing Res Rev. 2012;11(2):320–4. https://doi.org/10.1016/j.arr.2012.01.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhan W, et al. Pueraria lobata-derived exosome-like nanovesicles alleviate osteoporosis by enhacning autophagy. J Management Launch. 2023;364:644–53. https://doi.org/10.1016/j.jconrel.2023.11.020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park YS, et al. Plum-Derived Exosome-like nanovesicles induce differentiation of osteoblasts and discount of Osteoclast activation. Vitamins. 2023;15(9). https://doi.org/10.3390/nu15092107.

  • Sim Y, et al. The Impact of Apple-Derived nanovesicles on the osteoblastogenesis of Osteoblastic MC3T3-E1 cells. J Med Meals. 2023;26(1):49–58. https://doi.org/10.1089/jmf.2022.K.0094.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee R, et al. Anti-melanogenic results of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human wholesome pores and skin. J Extracell Vesicles. 2020;9(1):1703480. https://doi.org/10.1080/20013078.2019.1703480.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho EG et al. Panax ginseng-Derived Extracellular Vesicles Facilitate Anti-Senescence Results in Human Pores and skin Cells: An Eco-Pleasant and Sustainable Strategy to Use Ginseng Substances, Cells 10(3) (2021). https://doi.org/10.3390/cells10030486

  • Baldini N, et al. Exosome-like nanovesicles remoted from Citrus limon L. Exert Antioxidative Impact. Curr Pharm Biotechnol. 2018;19(11):877–85. https://doi.org/10.2174/1389201019666181017115755.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahdipour E. Beta vulgaris juice comprises biologically lively exosome-like nanoparticles. Tissue Cell. 2022;76:101800. https://doi.org/10.1016/j.tice.2022.101800.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perut F, et al. Strawberry-Derived Exosome-Like nanoparticles stop oxidative stress in human mesenchymal stromal cells. Biomolecules. 2021;11(1). https://doi.org/10.3390/biom11010087.

  • Zhang M, et al. Edible ginger-derived Nano-lipids loaded with doxorubicin as a Novel Drug-delivery Method for Colon most cancers remedy. Mol Ther. 2016;24(10):1783–96. https://doi.org/10.1038/mt.2016.159.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, et al. Focused drug supply to intestinal macrophages by bioactive nanovesicles launched from grapefruit. Mol Ther. 2014;22(3):522–34. https://doi.org/10.1038/mt.2013.190.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao Q, et al. Lemon-Derived Extracellular vesicles Nanodrugs allow to effectively overcome Most cancers Multidrug Resistance by endocytosis-triggered Power Dissipation and Power Manufacturing discount. Adv Sci (Weinh). 2022;9(20):e2105274. https://doi.org/10.1002/advs.202105274.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, et al. A complete evaluation of the Bencao (natural) small RNA Atlas reveals novel RNA therapeutics for treating human illnesses. Sci China Life Sci. 2023;66(10):2380–98. https://doi.org/10.1007/s11427-022-2181-6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang YL, et al. Conventional Chinese language Medication Formulae QY305 decreasing cutaneous hostile response and diarrhea by its nanostructure. Adv Sci (Weinh). 2024;11(5):e2306140. https://doi.org/10.1002/advs.202306140.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarovni N, et al. Built-in isolation and quantitative evaluation of exosome shuttled proteins and nucleic acids utilizing immunocapture approaches. Strategies. 2015;87:46–58. https://doi.org/10.1016/j.ymeth.2015.05.028.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konoshenko MY, et al. Isolation of Extracellular vesicles: Common methodologies and newest developments. Biomed Res Int. 2018;2018:8545347. https://doi.org/10.1155/2018/8545347.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sidhom Okay, et al. A evaluate of Exosomal isolation strategies: is measurement Exclusion Chromatography the best choice? Int J Mol Sci. 2020;21(18). https://doi.org/10.3390/ijms21186466.

  • Zhu MZ, et al. Edible exosome-like nanoparticles from portulaca oleracea L mitigate DSS-induced colitis by way of facilitating double-positive CD4(+)CD8(+)T cells enlargement. J Nanobiotechnol. 2023;21(1):309. https://doi.org/10.1186/s12951-023-02065-0.

    Article 
    CAS 

    Google Scholar
     

  • Kim WS et al. Immunological Results of Aster yomena Callus-Derived Extracellular Vesicles as Potential Therapeutic Brokers towards Allergic Bronchial asthma, Cells 11(18) (2022). https://doi.org/10.3390/cells11182805

  • Kumar A, et al. Ginger nanoparticles mediated induction of Foxa2 prevents high-fat diet-induced insulin resistance. Theranostics. 2022;12(3):1388–403. https://doi.org/10.7150/thno.62514.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramírez O, et al. Aloe vera peel-derived nanovesicles show anti-inflammatory properties and forestall myofibroblast differentiation. Phytomedicine. 2024;122:155108. https://doi.org/10.1016/j.phymed.2023.155108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sundaram Okay, et al. Garlic exosome-like nanoparticles reverse high-fat weight loss program induced weight problems by way of the intestine/mind axis. Theranostics. 2022;12(3):1220–46. https://doi.org/10.7150/thno.65427.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, et al. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel method for environment friendly siRNA drug supply to deal with ulcerative colitis. Nanomed (Lond). 2017;12(16):1927–43. https://doi.org/10.2217/nnm-2017-0196.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, et al. Oral gavage of Ginger nanoparticle-derived lipid vectors carrying Dmt1 siRNA blunts Iron Loading in Murine Hereditary Hemochromatosis. Mol Ther. 2019;27(3):493–506. https://doi.org/10.1016/j.ymthe.2019.01.003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThe Space Debris Disaster that Could Cripple Modern Civilization
    Next Article Countries to Push for $200Bn Nature Finance Deal at COP16 Amid Half Failing to Meet Biodiversity Targets
    morshedi
    • Website

    Related Posts

    Herbs

    Common Sunday Dinner herb could fight dementia and diabetes

    June 8, 2025
    Herbs

    Boost Your Digestion: Doctor-Approved Herbs For A Healthy Gut

    June 8, 2025
    Herbs

    Gardeners urged to never plant basil next to 1 common herb – ‘may stunt growth’

    June 8, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Commentary: Does Volvo’s Chinese ownership threaten US national security?

    February 1, 202522 Views

    FHRAI raises red flag over Agoda’s commission practices and GST compliance issues, ET TravelWorld

    April 19, 202514 Views

    Mystery of body in wetsuit found in reservoir puzzles police

    February 22, 202514 Views

    Skype announces it will close in May

    February 28, 202511 Views

    WarThunder – I Joined The Swedish AirForce

    March 17, 20257 Views
    Categories
    • Art
    • Article
    • Author
    • Books
    • Celebrity
    • Countries
    • Did you know
    • Entertainment News
    • Fashion
    • Food
    • Funny
    • Gaming
    • Health
    • Herbs
    • History
    • IT
    • Latest News
    • Mixed
    • Mystery
    • Opinions
    • Poets & philosopher
    • Politics
    • Research & Science
    • Shopping
    • space
    • Spiritual
    • Sports
    • Stories
    • Strange News
    • Technology
    • Travel
    • Trending News
    • United Nation
    • University
    • war
    • World Economy
    • World Leaders
    • World News
    • Youtube
    Most Popular

    Commentary: Does Volvo’s Chinese ownership threaten US national security?

    February 1, 202522 Views

    FHRAI raises red flag over Agoda’s commission practices and GST compliance issues, ET TravelWorld

    April 19, 202514 Views

    Mystery of body in wetsuit found in reservoir puzzles police

    February 22, 202514 Views
    Our Picks

    Afghanistan humanitarian crisis causes parents to sell children – BBC News

    June 8, 2025

    Pope criticizes political nationalism, prays for reconciliation and dialogue – National

    June 8, 2025

    A Cuban woman surprises with the spiritual remedy she uses when she’s facing problems at work and closed paths: “You will remember me.”

    June 8, 2025
    Categories
    • Art
    • Article
    • Author
    • Books
    • Celebrity
    • Countries
    • Did you know
    • Entertainment News
    • Fashion
    • Food
    • Funny
    • Gaming
    • Health
    • Herbs
    • History
    • IT
    • Latest News
    • Mixed
    • Mystery
    • Opinions
    • Poets & philosopher
    • Politics
    • Research & Science
    • Shopping
    • space
    • Spiritual
    • Sports
    • Stories
    • Strange News
    • Technology
    • Travel
    • Trending News
    • United Nation
    • University
    • war
    • World Economy
    • World Leaders
    • World News
    • Youtube
    Facebook X (Twitter) YouTube LinkedIn
    • Privacy Policy
    • Disclaimer
    • Terms & Conditions
    • About us
    • Contact us
    Copyright © 2024 morshedi.se All Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.

    Please wait...

    Subscribe to our newsletter

    Want to be notified when our article is published? Enter your email address and name below to be the first to know.
    I agree to Terms of Service and Privacy Policy
    SIGN UP FOR NEWSLETTER NOW